
Service Oriented Networking

David Griffin,
Miguel Rio

University College
London, UK

Pieter Simoens,
Piet Smet

iMinds/University of
Ghent, Belgium

Frederik Vandeputte
Luc Vermoesen

Alcatel-Lucent Bell NV,
Belgium

Dariusz Bursztynowski
Orange, Poland

Folker Schamel
Spinor, Germany

Abstract — This paper introduces a new paradigm for service
oriented networking being developed in the FUSION project1.
Despite recent proposals in the area of information centric
networking, a similar treatment of services – where networked
software functions, rather than content, are dynamically
deployed, replicated and invoked – has received little attention by
the network research community to date. Our approach provides
the mechanisms required to deploy a replicated service instance
in the network and to route client requests to the closest instance
in an efficient manner. We address the main issues that such a
paradigm raises including load balancing, resource registration,
domain monitoring and inter-domain orchestration. We also
present preliminary evaluation results of current work.

Keywords—Service oriented networking, orchestration, routing,
services, placement algorithms, anycast.

I. INTRODUCTION AND MOTIVATION
The Internet was originally conceived as a data

communications network to interconnect end-hosts: user
terminals and servers. The focus was on delivering data
between end points in the most efficient manner. All data was
treated in the same way: as the payload of packets addressed
for delivery to a specific end-point. In recent years, since the
development of the world-wide web, the majority of traffic on
the Internet originates from users retrieving content. The
observation that many users were downloading the same
content led to the development of content delivery/distribution
networks (CDNs). CDNs cache content closer to the users to
reduce inter-provider traffic, and improve users’ quality of
experience by reducing server congestion through load
balancing requests over multiple content replicas. In a content-
centric world, communications are no longer based around
interconnecting end-points, but are concerned with what is to
be retrieved rather than where it is located. CDNs achieve this
by building overlays on top of the network layer but recent
research has taken matters a stage further by routing requests
for named content to caches which are dynamically maintained
by the network nodes themselves, rather than having
predefined locations of the content, pushed a priori based on
predicted demand. Such an approach represents a basic
paradigm shift for the Internet.

1 The research leading to these results has received funding from the

European Union's Seventh Framework Programme (FP7/2007-2013) in the
FUSION (Future Service Oriented Networks) project under grant agreement
n° 318205.

Although information centric networking (ICN) has
received enormous attention recently [1][2][3], the approach,
like CDNs, is limited to non-interactive content where identical
copies are distributed to multiple consumers. Cloud computing
on the other hand has been developed to deliver applications
and services in a scalable manner to cope with elasticity of
demand for computing resources, exploiting economies of
scale in multi-tenancy data centres (DCs). Just as with CDN
services in the past, cloud resources are now being deployed in
local ISPs and other distributed network locations, presenting a
much more complex problem than can be solved with
generalised resource assignment algorithms in individual DCs
or cloud infrastructures with only a handful of geographical
locations. While new networking paradigms for intra-data-
centre communications have been developed to facilitate the
distribution of data-processing intensive applications over a
flexible number of computing devices within the same DC [4],
these techniques and technologies are limited to specific DCs
and services and have not been rolled out to the wider-area
Internet. Cloud federation has received a lot of attention in
recent years [6] but techniques have been aimed at improving
scalability of cloud-based applications and they do not address
the problem of fine grained localisation of processing nodes in
the network between the federated clouds.

We envisage a situation where large numbers of service
nodes – which we term execution zones – are distributed
throughout the Internet: in access points close to the users; co-
located with routers within an ISP’s network; in local data-
centres owned and operated by ISPs; and in traditional data-
centres and service farms operated by cloud and service
providers. Given this rich set of resources, a set of functions
and algorithms is required to enable services to be flexibly and
efficiently deployed to optimise the placement of service
instances according to the performance requirements of the
application, the location of its users and their demand patterns.
At the network level a service-anycast capability is needed so
that service instance selection can be optimised on the grounds
of network metrics as well as server load.

Section II presents an overview of our service oriented
networking architecture. Section III focuses on the service
layer of the solution covering service orchestration and
execution while section IV describes the network layer
covering the routing aspects of service queries and invocations.
Section V presents some initial results evaluating algorithms
for service routing and load balancing based on a combination
of network and server level metrics. Section VI discusses
related work.

Service
Routing

IP Routing

Execution
Plane

Fig. 1. FUSION Framework

II. ARCHITECTURE
The FUSION framework can be seen in Fig. 1.

Functionality is divided into 3 layers. At the lower level IP
routing forwards packets using traditional end-to-end
protocols. At the top layer the execution plane consists of all
the execution zones where the services’ instances will run. In
the middle the service router layer will forward request from
clients to the appropriate service instances.

Execution*Zone*1B
Execution*Zone*2C

Execution*Zone*2B
Execution*Zone*1A

Service
Gateway

IP
Gateway

Forwarding*
Function

Routing*
Function

Service
Gateway

IP
Gateway

Forwarding*
Function

Routing*
Function

Orchestration
Domain*1

Service
Forwarder

Service
Forwarder

Service
Router

Service
Forwarder

Service
Forwarder

Service
Router

Service
Router

Orchestration
Domain*2 OrchestratorOrchestrator

Application
Developer*2

Service
Manifest

Service
Executables

Forecasted
Demand

Service*Routing*
Domain*1

Service
Instance

Service
Instance

Service
Instance

Zone*
Manager

Zone*
Manager

Execution*Zone*2AService*Routing*
Domain*2

Application
Developer*1

Service
Manifest

Service
Executables

Forecasted
Demand

Fig. 2. FUSION architecture

The basic operation of the FUSION system is that
orchestration domains – consisting of a potentially large
number of geographically distributed execution zones – deploy
services on behalf of application developers or service
providers in one or more execution zones according to the
expected demand by service users. Service routing domains,
consisting of one or more service routers, are responsible for
matching service requests referring to a service by service
identifier (serviceID) to execution zones containing running
instances of the requested service. Service routing is anycast in
nature – the user simply requests a service and it is the
responsibility of the service routing plane to find the “best”
available instance for that request. Once a specific service
instance in a specific execution zone has been selected for the
user request, data plane communications take place in the data
forwarding plane depicted by “IP Routing” in the lower layer

of Fig. 1. Note that physical DCs are depicted in the lower IP
routing layer as data-plane communications will be directly
between users and service instances running in physical DCs,
while the abstract representation of execution zones – a logical
partition of a DC – are shown in the upper execution plane.

The main functional entities in the FUSION architecture are
depicted in Fig. 2. The three main entities are the orchestrator,
execution zone and service router.

The orchestrator manages its orchestration domain
resources including execution zones and services which it
manages on behalf of application developers (or service
providers).

The execution zone is the logical representation of a
collection of physical computational resources in a specific
location, such as a DC. The orchestrator has an abstract view of
an execution zone and the detailed internals are managed by a
zone manager. The zone manager is responsible for managing
service instances within its zone but under the instruction of the
orchestrator. It will select the specific physical location
including virtual machine (VM), machine and rack of
individual service instances and interact with the local
infrastructure management platform of the DC/cloud node for
VM lifecycle management. The execution zone interacts with
the communications infrastructure of the outside world through
a service gateway.

The service router is responsible for maintaining and
managing service routing information to create forwarding
paths for queries/invocation requests from users and other
service instances to be resolved or forwarded to execution
zones containing available running instances of the specified
serviceID.

III. SERVICE ORCHESTRATION AND EXECUTION
In this section, we elaborate on the orchestration and

execution plane of the FUSION architecture, highlighting some
of the design decisions and strategies for automatically
managing demanding complex services across heterogeneous
execution environments.

A. Design decisions

For many reasons including scalability, the overall
orchestration and management of services and resources has
been divided in two layers, namely a logically centralised
domain orchestrator and a distributed set of independent
execution zones, each managed by their own zone manager.
Whereas a domain orchestrator has a high-level overview of all
services that are registered and deployed within its domain, a
zone manager is responsible for the lower-level details of
mapping services onto the available resources and managing
both the services and resources. The domain orchestrator has
no direct control or view of the available resources and
delegates this functionality to the zone managers. A domain
orchestrator can also decide to dynamically deploy a zone
manager in a new DC, effectively converting some of its
resources into a new execution zone onto which FUSION
services can be deployed.

For the design of an execution zone, we opted in the
general case for an overlay approach, in which the zone and its
zone manager are running on top of the existing DC
management layer. The zone manager communicates with a
DC abstraction layer for translating FUSION commands into
DC specific commands for deployment and monitoring
purposes as shown in Fig. 3. The FUSION Platform as a
Service (PaaS) capabilities could also be integrated into the
native DC management layer via FUSION-specific OpenStack
plug-ins, for example, for more fine-grained control over
services and resources.

FUSION Zone
Manager

Hardware Layer (Compute, Storage, Network)

FUSION DC
Management

FUSION Service
Instance

FUSION Service
Instance

DC Mgmt Layer (EC2, CloudBand, OpenStack, etc.)

Fig. 3. Execution Zone Overlay Approach

B. Composite services

With the FUSION framework, we want to support
composite services, which consist of a graph of connected
service components. We make a clear distinction between a
service graph, which is the graph at specification time, and a
service instance graph, which is the graph at runtime, both of
which can be static or dynamic in nature. Both require different
approaches and mechanisms and allow for different
optimisation opportunities. It is the responsibility of the
FUSION domain orchestrator to deal with these complexities
in an automated way when deploying new instances across one
or more execution zones.

C. Session slots

Service instances typically can handle a number of requests
in parallel, depending on the allocated resources and the
service characteristics. For services with long-term sessions,
each request will consume some resources for several minutes
or hours. Service routers need to route to service instances that
have available resources to process the new incoming request.
To solve this issue in a scalable way we propose the concept of
session slots. The core idea is that each service instance keeps
track of its available session slots based on the available
resources and exposes this information to the zone manager,
which can inject this information via the service gateway into
the service routing plane, which can use this information for
routing an incoming service request to an instance that still has
some slots available. Several advantages of this approach
include light-weight service routing, a clear separation of
resource allocation and routing, the possibility for hierarchical
aggregation, service type neutrality, simplifying auto-scaling
decisions and billing.

D. Distributed service placement via evaluator services

A fundamental problem that FUSION orchestration
addresses is the scalable and optimal placement of (composite)

services across a distributed set of zones, taking into account
application-specific requirements and constraints. These
requirements can be modelled by the affinity or anti-affinity
degree of service components with respect to each other, the
source and client end points and their execution environments.
A simple example of this is depicted in Fig. 4 for a composite
service consisting of two service components A and B that can
be mapped onto one or more execution zones Zi.

A B
End
Point

C
lie

n
t
s

S
o
u
rc
e
s

End
Point

End
Point

End
Point

Z1 Z2

Fig. 4. Distributed placement problem

As a first-order scalable and flexible strategy, we address
the problem with a five-step distributed approach using
application-specific evaluator services, as depicted in Fig. 5.

1. The placement component of the domain orchestrator
preselects a number of viable zones for each service
component.

2. Next, each of the selected zones will be asked to return an
offer with respect to deploying one or more instances of a
service component in that zone.

Orchestration
Placement

Zone
Manager

Evaluator
Service

Evaluate zone Evaluate request

Score

Prepare offer

Offer

Preselect
zones

Select
best zones

Fig. 5. Distributed placement strategy

3. The zone manager triggers application-specific evaluator
services to provide a score regarding the deployment request
within the zone. The score is a multi-dimensional metric that
can be interpreted by the zone manager. The evaluator
service is a plug-in service that allows for very fine-grained
assessments regarding the specific capabilities of the zone
whether the graphics processing unit (GPU) in that zone
supports a specific shared model, for example.

4. The zone evaluates the score and returns an offer to the
domain orchestrator.

5. The domain orchestrator then finds the optimal zones for
each service component based on the received offers,
policies, network information and overall application
requirements.

IV. SERVICE ROUTING
To design our service routing framework we looked at

several possibilities. Clean slate approaches were considered
unrealistic for deployment in the short to medium term due to it
being highly disruptive at a high cost to ISPs. The option of
using the Domain Name System (DNS) as currently deployed
has the disadvantage of not easily fitting the requirement for
resolving serviceIDs without compromising the service naming
scheme to fit existing DNS resource records. Even if new
resource records are defined for FUSION-compatible
serviceIDs and the client-DNS server protocol could remain
intact, new functionality for resolving and forwarding queries
is required for DNS servers to act as service routers and the
benefits of retaining the existing DNS protocol would be very
limited.

We concluded that an overlay routing solution would be the
most appropriate since it is more easily deployable, can achieve
all our requirements and by being able to run at the application
layer will have much weaker requirements on memory usage.
Hence the service routing layer accommodates the following
three scenarios:

Firstly, a resolution option where the FUSION service
routing plane resolves serviceID to a specific execution
zone/service instance and returns one or more IP addresses to
the client for subsequent selection and invocation. This
corresponds to an enhanced anycast service where both
network status and server performance characteristics are taken
into account.

Secondly, an invocation option where the FUSION service
routing plane forwards a client’s invocation request to a
selected execution zone and the service instance is invoked
directly, with the service response being routed back via the
service routing overlay. However, we do not foresee this option
being used for either long-lived sessions or request-response
sessions where the quantity of returned data is excessively
large without establishing a separate data-plane communication
channel through IP.

Finally, an option inspired by software defined networking
(SDN) for the case when there are no running service instances
and the service routing plane should invoke orchestration (or a
zone manager) to deploy an instance on demand.

V. PRELIMINARY RESULTS
In traditional IP routing, the locator of the destination host

is encoded in the IP packet and is used by routers to look-up
the outgoing interface to forward the packet on. The FUSION
service router plane, however, uses location-agnostic
serviceIDs. Since this serviceID resolves to multiple instances,
service routers must use statistical load-balancing to determine
the outgoing interface.

Using simulated annealing, we explored the infinite
solution space to construct the optimal load balancing matrix
R(i,j,s) [0,1]. Given the user demand of node i for service s,
R(i,j,s) indicates which fraction of that demand is forwarded to
the instances of service s running on node j. We assume that
the number of instances is fixed, and that user demand from
node i can be modelled as a Poisson process with parameter

 measured as requests per time unit. Our objective
function minimizes the Round Trip Time (RTT) and takes into
account the network latency between client and service
instance, as well as the request queuing times at the instance.

As network latency is subject to change due to load caused
by background traffic, FUSION requires monitoring of the
network load and topology. Frequent monitoring provides
service routers with more accurate measurements to load-
balance requests, yet also contributes to the load caused by
background traffic. Server load also varies over time and
influences the request queuing times at the instance. To
account for both network and server load, FUSION requires
monitoring tools to gather the information which is used when
allocating tasks. Also, a trade-off between frequent updates and
increased network load must be made.

Embedding this mapping exactly in the service router
forwarding tables requires the source identifier to be included,
which would introduce unacceptable bloat of the routing tables.
In a scalable solution, we can only set weights for statistical
load-balancing.

We implemented two heuristics to determine the weights in
each service router. In a first approach, we ranked for each
client the running instances by increasing latency and greedily
assigned demand to the closest instances, without exceeding
the maximum server load. We compared this with an ‘Equal
Share’ approach where the demand from a single node is
equally spread over all servers.

Fig. 6 shows initial simulation results for sparse and dense
network topologies. Each topology contains 20 routers, 5
clients to generate demand and 3 servers running services. The
results are averaged over 50 topologies generated by the
Waxman-Brite generator [5].

The simulation results show that for sparse network
topologies, the greedy approach closely matches the optimal
solution retrieved via Simulated Annealing. Sparse networks
contain fewer paths and so traffic is concentrated onto fewer
and longer paths. On the one hand, this introduces more
difference in the latency from a client node to the different
instance nodes. Even if the closest server is already heavily
loaded, the gain in processing time by sending requests to more
distant instances (with presumably less load) does not offset the
additional network latency. This effect is clearly visible for the
Equal Share approach.

Fig. 6. Expected quality of service selection result for a sparse network

Fig. 7. Expected quality of service selection result for a dense network

In dense network topologies (Fig. 7) there are more paths
available to load-balance between. The greedy approach
utilises a minimal subset of servers while other servers remain
idle, even when the network latency to these servers is not
significantly higher. This concentration results in decreased
response time compared to the better spread of load of the
Equal Share algorithm.

Our initial results indicate the importance of optimal load-
balancing by service routers, taking into account network
topology, network metrics and server load.

VI. RELATED WORK
There is a wide range of previous work upon which we

build. We share with recent proposals on ICN (for example [1]
[2]) the need for scalable named-based routing but adding
crucial service centric features. We also build on currently
deployed services like DNS [7] and the session initiation
protocol (SIP) [8] by building a resolution and invocation
protocol for services which could be seen as a significant
extension to DNS functionality with SIP-like signalling
features. One of the few prior studies on service oriented
networking, SoCCeR [9] applies ant colony optimisation to
CCNx for service routing on combined network/service
metrics. In [10] the authors propose an object oriented
approach to naming services in CCNx. XIA [11] uses a
restricted directed acyclic graph for a common naming scheme
for hosts, content and services.

Several distributed service management architectures such
as IRMOS [12] or NGSON [13] have been proposed in recent
years. In contrast to IRMOS, we target the wide area Internet
and thus have to overcome the requirement of IRMOS for
providing strict QoS guarantees as these can be reliably offered
only in managed networks. We also augment the NGSON
paradigm by providing a powerful service orchestration layer
that is capable of allocating and load balancing service
instances through dynamic cooperation with a distributed
execution environment.

We also build on cloud technologies like Openstack [14] by
providing additional PaaS capabilities. We will build upon
light-weight isolation and virtualization strategies like Linux
Containers (LXC) [15] OpenVz [16] and Docker [17] and will
leverage TOSCA [18] for the description of services as well as
OpenStack Heat for managing/orchestrating services within a
FUSION domain.

VII. CONCLUSIONS
This paper introduces a novel service oriented networking

paradigm that centres around service placement, orchestration
and service routing. We believe that these new primitives will
enrich the Internet architecture enabling new kinds of QoE
demanding applications to be deployed efficiently across
distributed execution environments. Current and future work
include the detailing of the service routing plane to be able to
direct requests taking into account a myriad of metrics which
include network characteristics, server load and deployment
costs.

REFERENCES
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

R. L. Braynard, Networking Named Content, in Proc. of ACM
CoNEXT 2009, Rome, December 2009.

[2] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar and P. Nikander,
LIPSIN: Line Speed Publish/Subscribe Inter-Networking, in Proc of
ACM SIGCOMM'09, Barcelona, Spain, 2009.

[3] C, Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, H. Karl,
Network of Information (NetInf) – An Information-Centric Networking
Architecture, Elsevier Computer Communications journal, special issue
on ICN, vol. 36, no. 7, pp. 721–735, April 2013.

[4] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A Scalable
Fault-tolerant layer 2 Data Center Network Fabric, in Proc. of ACM
SIGCOMM’09, Barcelona, Spain, 2009.

[5] A. Medina, I. Matta, and J. Byers, On the Origin of Power Laws in
Internet Topologies, ACM Computer Communications Review, April
2000.

[6] A. Celesti, F. Tusa, M. Villari, A. Puliafito, How To Enhance Cloud
Architectures To Enable Cross-federation, in Proc. of 3rd IEEE
International Conference on Cloud Computing (IEEE Cloud 2010),
Miami, Florida, USA July 2010.

[7] P. Mockapetris, RFC 1035 - Domain Names: Implementation and
specification, November 1987.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Petersoni, R.
Sparks, M. Handley and E. Schooler, RFC 3261 - SIP: Session Initiation
Protocol, June 2002.

[9] S. Shanbhag, N. Schwan, I. Rimac, and V. Varvello, Soccer: Services
over content-centric routing, in Proc. of ACM SIGCOMM Workshop on
Information-Centric Networking (ICN’11), Aug. 2011.

[10] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
Service-Centric Networking, in Proc. of IEEE ICC FutureNet IV
workshop, Kyoto, Japan, June 2011.

[11] D. Han et al., XIA: Efficient Support for Evolvable Internetworking, in
Proc. of 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’12), San Jose, CA, April 2012.

[12] IRMOS Project Deliverable, D3.1.4, Updated Final version of IRMOS
Overall Architecture, ICCS/NTUA and other partners, 2011.

[13] NGSON (Next Generation Service Oriented Network) – IEEE 1903,
Standard for the Functional Architecture of Next Generation Service
Overlay Networks, 2011.

[14] OpenStack, https://www.openstack.org/, 2014.
[15] Linux Containers, http://linuxcontainers.org/, 2013.
[16] Kolyshkin, K., Virtualization in Linux,

http://download.openvz.org/doc/openvz-intro.pdf, 2006.
[17] Docker, https://www.docker.io/, 2013.
[18] OASIS Topology and Orchestration Specification for Cloud

Applications (TOSCA) specification, version 1.0, http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf.

