

Future Service Oriented Networks

www.fusion-project.eu

© Copyright 2014 FUSION Consortium

University College London, UK (UCL)

Alcatel-Lucent Bell NV, Belgium (ALUB)

Telekomunikacja Polska S.A., Poland (TPSA)

Spinor GmbH, Germany (SPINOR)

iMinds vzw, Belgium (IMINDS)

Project funded by the European Union under the

Information and Communication Technologies FP7 Cooperation Programme

Grant Agreement number 318205

Deliverable D4.2

Updated specification of service-centric routing protocols,

forwarding & service-localisation algorithms.

Public report, Version 1.0, 19 December 2014

Authors

UCL David Griffin, Miguel Rio, Khoa Phan, Vasilis Giotsas

ALUB Frederik Vandeputte, Luc Vermoesen

TPSA Dariusz Bursztynowski

SPINOR Folker Schamel, Michael Franke

IMINDS Piet Smet, Lander Van Herzeele, Pieter Simoens

Abstract In this deliverable, we provide an update on the specification, design and

implementation of the service resolution layer in FUSION. We first describe the

architectural and policy aspects of intra-domain and multi-domain resolution. Next, we

discuss the design of the different interfaces of the service resolver. In the last part of

this deliverable, we report on the progress in the design of various service resolution

algorithms, and present an overview of the current implementation status of the key

components in the FUSION service resolution layer prototype.

Keywords FUSION, service-aware networking, interfaces, algorithms, prototype.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 2 of 71

Copyright © FUSION Consortium, 2014

Revision history

Date Editor Status Version Changes

10/09/14 P. Simoens TOC 0.1 Initial TOC

23/09/14 P. Simoens TOC 0.2 Updated TOC + responsibilities

03/10/14 P. Simoens draft 0.3 bullet point input merged

31/10/14 P. Simoens draft 0.4 first input merged

24/11/14 P. Simoens draft 0.5 first consolidated version

29/11/14 P. Simoens draft 0.6 Update

5/12/14 P. Simoens draft 0.7 Update

10/12/14 P. Simoens draft 0.8 Update after consortium

meeting

14/12/14 P. Simoens draft 0.9 UCL input merged

15/12/14 P. Simoens draft 0.10 Orange input merged

18/12/14 P. Simoens release candidate 0.11 Editorial changes

19/12/14 P. Simoens stable 1.0

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 3 of 71

Copyright © FUSION Consortium, 2014

EXECUTIVE SUMMARY

This document is a deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 project. It

describes the functional requirements and interfaces of the service resolution layer in the FUSION

architecture. The key challenge for this layer is the resolution and load-balancing of service requests

to the best instance, given the existence of many different potential execution points and

dynamically instantiated service instances with varying load. We refer the reader to D2.2 for an

overall view on the architecture and the interfaces, and to D3.2 for a detailed discussion on service

orchestration aspects.

The service resolution layer is conceived as a collection of peering resolution domains, akin to the

Autonomous Systems (AS) in the Internet. In this deliverable, we detail the interfaces and functional

aspects of both intra-domain and inter-domain resolution. We study the roles and objectives of the

different entities and how the protocols of the service resolution layer must be shaped to support

policy enforcement.

This intra- and inter-domain analysis results in a functional decomposition of the service resolver and

a description of its interfaces. In the second part of this deliverable, we elaborate on the different

messages that are needed for each of those interfaces. The syntax of all service resolution messages

has been worked out, resulting in the novel Networked Services Resolution Protocol (NSRP) that is

presented in this deliverable. NSRP supports service anycast for resilience and load balancing, direct

invocation with edge filtered access for security, support for any name space and more complex

query results to enable several types of applications. The syntax details are presented in the

appendix of this deliverable.

We also present an initial study on service resolution for composite services. Depending on how

much knowledge on the composite service structure is available in the resolution layer, a more

optimal replica selection can be realized. This comes at the price of more complexity. In this

deliverable, we only report exploratory work on this topic, which serves as input to identify the need

for architectural re-evaluation and extension to support composite services, planned in year 3.

The algorithmic work has been progressing as well in the second year of the project. In this

deliverable, we present two dynamic selection algorithms for mapping user requests to service

instances. The first algorithm is targeting service resolution in a single domain. Upon request arrival,

it constructs service availability graphs based on session slot advertisements and finds the shortest

available network path. The second algorithm focuses on multi-domain resolution. The algorithm

uses a Linear Programming approach to solve a multi-objective optimization problem, trading off

user utility against network transit cost.

Lastly, we report on the implementation status of the service resolution layer components, as well as

the simulation and emulation environment in which these components will be evaluated.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 4 of 71

Copyright © FUSION Consortium, 2014

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS .. 4

1. INTRODUCTION .. 6

2. INTRA-DOMAIN SERVICE RESOLUTION... 8

 Scope of a service resolution domain .. 8 2.1.1

 Zone Gateway ... 9 2.1.2

2.1.2.1 Intermediate between service resolver and service instance .. 9
2.1.2.2 Instance state aggregation ... 10
2.1.2.3 Instance state reporting ... 10
2.1.2.4 Trust relationship between zone gateway and service resolver .. 10

3. MULTI-DOMAIN SERVICE RESOLUTION .. 12

3.1 The use of policies in service resolution .. 12
 Aspects .. 12 3.1.1

3.1.1.1 Roles ... 12
3.1.1.2 Objectives ... 13

 Basic requirements .. 14 3.1.2

3.2 Protocol-level mechanisms.. 14
 Out-of-band enforcement ... 15 3.2.1

 In-band enforcement ... 15 3.2.2

3.2.2.1 In-band invocation mechanisms ... 15
3.2.2.2 Information exchange .. 16

3.3 Principles of operation .. 16
 Domain of resolution ... 17 3.3.1

 Collection and exchange of information ... 19 3.3.2

4. SERVICE RESOLVER .. 20

5. NETWORK STATE EXPOSITION ... 22

6. SERVICE STATE EXPOSITION .. 23

6.1 By application components ... 23
6.2 Multi-domain service state exposition .. 23
6.3 By service endpoints/clients .. 25

7. QUERY .. 26

7.1 Service ID Namespace ... 26
7.2 Resolution policy ... 26
7.3 Invoke .. 27

8. NSRP PROTOCOL DESIGN .. 28

9. RESOLUTION ASPECTS OF COMPOSITE SERVICES .. 30

9.1 Zone gateway .. 30
 Advertisement of composite service availability ... 30 9.1.1

 Zone-internal resolution .. 30 9.1.2

9.2 Composite service resolution .. 32

10. INTRA-DOMAIN ROUTING BASED ON SESSION SLOTS ... 34

 Problem description .. 34 10.1.1

 Selection algorithms ... 34 10.1.2

10.2 Interaction between resolution and orchestration layer .. 37
10.3 Evaluation .. 39

 Simulation Platform .. 39 10.3.1

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 5 of 71

Copyright © FUSION Consortium, 2014

10.3.1.1 Generating a network topology.. 39
10.3.1.2 Constructing a FUSION overlay... 40
10.3.1.3 Initial service placement ... 41
10.3.1.4 Running a simulation .. 41
10.3.1.5 Sending a service request ... 41
10.3.1.6 Evaluating the service placement ... 42
10.3.1.7 Gathering results .. 42

 Service selection .. 42 10.3.2

 Service placement ... 44 10.3.3

10.4 Future work ... 45

11. DYNAMIC INTER-DOMAIN RESOLUTION ... 46

11.1 Problem description and Mathematical model ... 46
 Problem description .. 46 11.1.1

 Utility function: ... 46 11.1.2

 Optimization Formulation: Linear Program (LP) ... 47 11.1.3

 Preliminary results of the LP model .. 51 11.1.4

11.1.4.1 Trade-off between the total utility and the transit cost ... 51
11.1.4.2 The benefit of max-min fairness ... 52

11.2 Server selection within Source-to-Screen (S2S) application .. 53
 Source-to-Screen application .. 53 11.2.1

 Implementation of S2S within FUSION architecture ... 55 11.2.2

 Impact of service resolution policies on performance and cost of S2S 57 11.2.3

12. SERVICE RESOLUTION PROTOTYPE ... 59

12.1 Emulation platform.. 59
12.2 Zone gateway .. 60

 OpenStack extension for VMs ... 60 12.2.1

 DCA-compatible version .. 60 12.2.2

12.3 Service resolver ... 60
12.4 Prototype Evaluation ... 60

 Average network cost ... 61 12.4.1

 Average cost per client node ... 62 12.4.2

13. CONCLUSION ... 63

14. REFERENCES .. 64

APPENDIX A: NSRP MESSAGE SYNTAX ... 66

Messages .. 66

OPTIONS .. 69

ERRORS .. 71

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 6 of 71

Copyright © FUSION Consortium, 2014

1. INTRODUCTION

The main primitive of the FUSION service resolution layer is to resolve service requests to the

locator(s) of (the) most appropriate instance(s) among many replicas of the service component

running in execution zones throughout the Internet. This fine-grained resolution capability is

performed on the grounds of network metrics, service performance metrics and server load.

As motivated in D4.1, the FUSION consortium makes the explicit choice to build the service

resolution layer as an overlay network on the existing IPv4/IPv6 network stratum. The main primitive

of this layer is the resolution of service requests from service ID to the transport network locator of

the most suitable service replica. Clients subsequently establish a network connection via service-

specific means, beyond the control of the FUSION service resolution layer.

Figure 1 presents a logical decomposition of the service resolution layer. The service resolution

protocol combines network and service instance state to build forwarding tables in the service

request resolvers. Instead of developing components for the monitoring of network, infrastructure

and services, FUSION wants to leverage on the vast array of monitoring tools and frameworks

available and only specifies the interface for the exposition of this state to the service resolution

protocol. As shown, the network and instance state information also serves as input for service

placement across execution zones. This logic is part of the orchestrator layer and is further discussed

in D3.2.

Figure 1: Logical view on service resolution layer

The FUSION service resolution layer is structured in multiple domains. Each service resolution

domain comprises one logically centralized service resolver to which the gateway of attached

execution zones reports service instance availability and state information.

The FUSION multi-domain service resolution is illustrated in Figure 2. Execution zones are grouped in

several domains, according to their IP network attachment point. The service resolver has a detailed

view on the underlying transport network that interconnects its execution zones, and the service

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 7 of 71

Copyright © FUSION Consortium, 2014

availability in execution zones attached to that part of the IP network. Service instance state is

exchanged between the different service resolvers, possibly subject to service resolution policies, so

that each domain can build its own catalogue of service instances worldwide. Clients direct their

service request to their service resolver. This resolver will first try to resolve this request to an

instance running in one of the local execution zones. If no suitable instance is available, and if

allowed by the service QoS requirements and deployment policies, the request will be resolved to an

instance running in another domain.

Figure 2: Service resolver collects monitoring information from instances running in execution

zones in its domain and exchange this with other domains.

Users send a request to the service resolver of their domain. Requests that cannot be resolved in the

domain, either because the service is not deployed or available, it can be resolved to the locator of

an instance hosted in an execution zone of another domain. The resolution can be done either in the

domain from where the request originates, either by forwarding the request to a service resolver in

another domain. This multi-domain architecture enables advanced service resolution policies

imposed by different stakeholders, as detailed in section 3.

As update of D4.1, this deliverable focuses on the service resolution layer of the FUSION architecture,

including the design and specification of interfaces as well as the implementation of its constituting

components (the service resolver and the zone gateway
1
). Its main contributions are:

- a functional description of service resolution in a single domain. This involves the

communication and interaction between service instances, the zone gateway and their

service resolvers

- a functional description of policy-based multi-domain service resolution

- a logical decomposition of the service resolver and discussion of each interface

- a detailed specification of the Networked Services Resolution Protocol that runs between

clients and service resolvers, and between service resolvers. The exact syntax is presented in

the appendix of this deliverable.

- progress report on the design, implementation and evaluation of different service resolution

algorithms that have been developed

- status report on the prototype for the service resolution layer that will be built in the project

This deliverable is structured as follows. We first present a functional discussion on intra- and inter-

domain service resolution. Then, we zoom in on each interface of the service resolution layer. In the

last part, we present experimental results on service resolution algorithm and an update on the

implementation status of the prototype of the service resolution layer.

1
 We refer the reader to deliverables D2.1 and D2.2 for an overall view on the architecture and the interfaces.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 8 of 71

Copyright © FUSION Consortium, 2014

2. INTRA-DOMAIN SERVICE RESOLUTION

In this section, we elaborate on the internals of a service resolution domain. Multi-domain aspects

are discussed in the next session.

 Scope of a service resolution domain 2.1.1

A service resolution domain is defined as the collection of one (logically centralized) service resolver

and the execution zones that directly report via their zone gateway service instance statistics to this

service resolver. The resolver governs the resolution to instances hosted in one of its execution

zones, although for scalability reasons it can allow service resolvers in other domains to handle

requests to execution zones in its own domain.

Each service resolver builds its own database with network and service state information. While

service state information is advertised by the zone gateway component of execution zones, network

monitoring information can be collected via various means: queried from other service resolvers or

via existing monitoring tools. Given the vast number of networking monitoring tools available,

FUSION does not mandate a particular network monitoring framework. Instead, to accommodate as

many deployment models as possible, we only define in a functional way the interface for network

state exposition.

However, the FUSION consortium is studying one particular model where a service resolution

domain coincides with the transport network of an ISP, advertised as a unique Autonomous System

Number (ASN) in BGP. The consortium considers this option as the most realistic deployment

scenario for FUSION service resolution, with each ISP operating one logical service resolver that

peers with service resolvers of other ISPs. In this scenario, the service resolver has direct access to

the network management and monitoring of the underlying transport network that interconnects

the different zone gateways.

In light of the current state-of-the-art, we expect each IP router to be a potential execution zone that

can run a limited number of service instances. For example, the Cisco IOX platform is enabling access

to computing and storage resources within the network devices to host applications and interfaces

as close to the network edge as possible [CISCO-IOX]. To have an initial expectation on the typical

size of a service resolution domain, we crawled the CAIDA IP-router topology that is continuously

collected and updated by a set of globally distributed probes [CAIDA]. This dataset contains the

detected routers with their assumed geolocation. Table 1 shows the number of routers in this

dataset for three European countries. Given the limitations of the collection process and the

geocoding of IP addresses, the databases contains multiple routers with the same geolocation. In the

third column of the table below, we provide the number of unique router locations in the database.

Table 1 – Number of IP routers per country, as crawled from CAIDA database

Country No. of nodes No. of nodes with unique

geographic coordinates

Germany 1 294 539 7 034

France 1 804 905 10 696

Poland 228 893 1 859

We are well aware that this table only provides a rough estimation of the size of a resolution domain.

On the one hand, the figures presented above are an overestimation since multiple ISPs/ASes are

active in the same country, the dataset may contain false positives and the applied geolocation might

be inaccurate. Also, ISPs can adopt individual rules as to where execution zones will be placed in their

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 9 of 71

Copyright © FUSION Consortium, 2014

network. On the other hand, we expect the number of execution points to increase. For example,

Nokia Siemens Networks has commercialized its Radio Access Cloud Server [NOKIA-LA], enabling to

deploy services on eNodeB base stations.

 Zone Gateway 2.1.2

Four stakeholders are involved before the instances of a service are announced to the service

resolution: the service provider, the orchestrator, the zone gateway (as part of the zone manager)

and the service resolver. In this deliverable, we focus on the interaction between the latter two: zone

manager and service resolver.

2.1.2.1 Intermediate between service resolver and service instance

To allow clients to discover and connect to a particular service instance, the endpoint of that

instance as well as instance state (e.g. load) are advertised by the zone gateway to its service

resolver. This endpoint is the tuple (IP, port) that the service resolver will answer to a service

request. Service resolvers can then advertise this information, possibly in aggregated or obfuscated

form, to resolvers in other domains.

Rather than having individual instances report directly to a service resolver, the FUSION consortium

makes the explicit choice to have the zone gateway in control of this process. This is motivated as

follows:

• Zone load balancing. Load balancing across multiple instances is an essential component in

any cloud infrastructure today. By exposing a single public IP, all traffic for service replicas is

routed through this load balancer, allowing for elasticity through up- and downscaling.

Moreover, common load-balancers perform additional zone orchestration tasks like

detecting unhealthy instances, auto-scaling and SSL termination. Since instances will be

provided with a private IP address, it is not possible to have service instances retrieve their IP

and port via introspection and announce it themselves to the service resolution domain
2
.

• Zone orchestration policies. The zone might be operated by a different entity than the

service resolution domain and may want to hide the number of instances actually deployed,

e.g. not to expose internal scaling policies. Moreover, by keeping the zone manager in charge

of the instance state advertisement to the service resolver, its orchestration capabilities are

enhanced. For example, the zone could apply an on-demand instantiation policy and

advertise service availability although no actual instances are deployed until the time the

service is actually invoked.

• Resolver layer scalability. Having each individual service instance injecting state into the

service resolution layer would cause a large amount of traffic. The zone gateway can

aggregate state information across all its instances and send a summary to the service

resolver.

The zone gateway reports two types of information to the service resolvers:

• Utility function: this is a metric that is service-specific and reflects the user QoE in terms of

network performance metrics. Higher values will result in more requests being resolved to

that instance.

• Session slots: to accommodate for the large heterogeneity of service performance metrics,

the FUSION consortium has decided to adopt the generic metric of session slots (as

introduced in D3.2). Session slots reflect the total number of concurrent sessions a particular

instance can handle.

2
 Some cloud providers, targeting the most demanding services, provide instances with a public interface that is

directly connected to the Internet [SOFTLAYER].

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 10 of 71

Copyright © FUSION Consortium, 2014

2.1.2.2 Instance state aggregation

Multiple instances of the same service can be running in a single zone. Each instance will report

monitoring information to the zone manager. Although in principle the individual instances can be

exposed to the service resolution layer, in most cases it can be expected that only one public

endpoint (e.g. IP/port of load balancer) is advertised, as this provides more flexibility for instance

scaling. Consequently, it is the responsibility of the zone gateway to process the individual instance

load information to one aggregated number of available session slots. The aggregation function to

be applied is determined by zone orchestration policies and by the service provider, since the

number of available session slots is not always the simple sum of the available slots advertised by

each running instance. In practice, the zone gateway must account for the slots that can be provided

by the maximum number of instances that could additionally be deployed. In case of composite

services, the zone gateway needs to account for the sharing of (resource) session slots between

multiple services. This is further explained in D3.2.

2.1.2.3 Instance state reporting

Session slots and utility functions only reflect a snapshot of monitoring information that will be

rapidly out-of-date. To improve the resolution capabilities, we therefore mandate that zone

gateways also advertise a histogram of service session times. This will allow the service resolution

plane to forecast the evolution of session slots.

2.1.2.4 Trust relationship between zone gateway and service resolver

As explained in the previous section, for reasons of scalability and policy enforcement, the FUSION

consortium has decided that the service resolver must receive service availability information from

the zone manager and not directly from the service instances. The corollary of this decision is that

the service resolver cannot assume a trust relationship with execution zones that are owned by a

different party.

We have identified three different security threats that may impact the service resolution:

Security threat: fake service availability advertisement

What?

Execution zones must attest that they have obtained the binary of a particular service, otherwise

malicious execution zones could advertise false service advertisements, leading to denial-of-service

for the users as they are resolved to non-existing instances
3
.

Mitigation?

One possibility is to only accept service registration from a predefined list of zone gateways.

However, this provides no absolute protection against hijacked zone gateways.

Some ICN approaches use self-certifying names, where the receiver can verify the integrity of the

downloaded content. However, as FUSION targets remotely running services instead of

downloadable content, self-certifying names are not sufficient as they do not guarantee

authentication.

One promising approach is to apply the Packet Level Authentication mechanism [PLA11]. The sender

adds an own header to packets, containing the sender’s cryptographic identity, certificate from the

trusted third party, signature over the packet and other fields. Using this information, other nodes

can verify the integrity and authenticity of the traffic origin. This mechanism can equally be used for

3
 This would lead to service unavailable errors (cf. 404 error code in HTTP). There is also the threat that clients

receive the IP/port of a malicious instance. However, clients can always attest the authenticity of the

instance they connect to using existing certificate-based security mechanisms like SSL/TSL.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 11 of 71

Copyright © FUSION Consortium, 2014

signalling messages. Applied to FUSION, service resolvers could use PLA to challenge execution zones

by sending a challenge to the public locator that is exposed by the execution. The execution zone

must then respond with an authentication packet that has the challenged signed by the service at

hand. Because such packets can only be generated by legitimate instances, the zone gateway proofs

that it executes the running service by forwarding this packet unmodified to the service resolver.

Security threat: SLA violation

What?

Zone gateways have interest in announcing better service performance statistics (e.g. more session

slots, better utility), as this will increase their chance of requests being resolved to an instance

hosted in their execution zone.

Mitigation?

In contrast to the previous security threat on fake service advertisement, signing the report

messages by the instance is not an option, as the zone gateway is responsible for aggregation and

advertisement to the service resolver.

If clients report back on their RTT to the service resolver, these figures can be compared with the

utility function and the network metrics that have been collected by the service resolver. If large

and/or repeating anomalies occur that cannot be attributed solely to the status of the transport

network, the service resolution plane could penalize such execution zones and resolve clients to

other execution zones.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 12 of 71

Copyright © FUSION Consortium, 2014

3. MULTI-DOMAIN SERVICE RESOLUTION

In this section, we identify the need for policy enforcement when the service resolution layer is

composed of multiple resolution domains. Policies can also be enforced by other entities involved,

like the zone manager, the orchestrator or the service provider. Based on study, we are able to

provide the basic operational principles and protocol requirements for multi-domain resolution. This

section discuss the multi-domain resolution from a more general perspective. More details

concerning multi-domain service resolution are discussed in section 6.2.

3.1 The use of policies in service resolution

Throughout this section, a policy is understood to be a rule that governs the selection of a service

instance. As will be specified later, such rules may apply directly to service requests or to the

information exchange that takes place between service resolvers to build their own forwarding

tables (we thus differentiate between resolution which operates on per-request basis from the

construction of forwarding and resolution tables which operates at different time-scale and is not

directly related to particular service requests).

In the following we discuss the main motivations that the different actors may have to enforce their

policies and how these motivations impact the service resolution. Based on this we define top-level

requirements for policy enforcement mechanisms applicable at the protocol level of the FUSION

service resolution plane.

 Aspects 3.1.1

In general, players that are involved in providing different functions defined by the FUSION

architecture may be interested in having a degree of control over the process of service resolution.

Their objectives and the desired degree of control may depend on many factors.

3.1.1.1 Roles

We first identify the different roles in the FUSION resolution. These roles will drive many

motivations, important requirements and respective protocol-level mechanisms.

The main roles that can influence the inter-domain service resolution are listed below. We also

provide exemplary motivations each role may have to enforce service resolution policies.

Originating service resolution domain – service resolution domain that is the home domain for a

service requestor (client or service instance). Exemplary underpinning principle for a policy that

this role may have is network traffic engineering and/or the preference to resolve requests to

instances hosted in other domains to save data centre resources. Apart from defining own

policies, an originating service resolution domain may have incentives to act on behalf of other

roles (e.g., domain orchestrator) and achieve some objectives thus contributing to the overall

fulfilment of these external policies. Exemplary motivations for the latter are:

• benefits from having agreements with clients, service providers and domain orchestrator, or

remote (e.g., trusted) service resolution domains to provide adequate network performance

statistics of the scope of its domain,

• benefits from having agreements with clients or domain orchestrator/service provider to

provide service resolution based on end-to-end network performance

The above motivations are not exhaustive and their relative value will depend on the domain in

question.

Terminating service resolution domain – service resolution domain having control over a subset

of execution zones where instances of requested service are hosted. Exemplary underpinning

principles in this case are similar (after appropriate adaptations) to those listed above for the

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 13 of 71

Copyright © FUSION Consortium, 2014

originating service resolution domain. Nevertheless, it is possible that business models specific

for this role (if any) may also result in incentives that will be unique to it.

Intermediate service resolution domain – service resolution domain that forwards service

requests between the originating and terminating domains. The main reason for the introduction

of such domains is to support aggregation of resolution information to improve the scalability of

the resolution layer. Another reason may be to enable network-based selection in presence of

transit network domains that otherwise would not be covered by the originating and/or

transiting domain. Intermediate domains will mainly enforce policies requested (injected) by

other domains to improve the quality of the selection process due to their enhanced view of

network state. A closer study on this role, the validity of respective incentives and potential

impact on service resolution mechanisms and also on the FUSION architecture is left for the next

period of the project (note that aggregation resolvers are mentioned also in section 6.2).

Orchestrator and service providers. Service providers are expected to define a lot of policies

and many of them can refer to service instance selection process, for example regarding service

access rights based on user attributes. According to the FUSION model, service providers are

positioned outside the service selection/resolution loop and are supposed to delegate policy

enforcement to the orchestrator. In the following we thus consider orchestrators as aggregating

points that enforce the policies on behalf of respective service providers. The following may be

additional motivations for an orchestrator to participate in the resolution process:

• enforcement of specific/complex policies difficult to achieve otherwise, e.g. in a distributed

way at the service resolution level

• hiding confidential information that is needed for policy enforcement.

We note that each party involved in the resolution process for a given request may wish to enforce

its own policy for this request. In section 3.1.2 we generalise this to formulate corresponding

requirements for inter-domain service resolution and in section 3.2 we propose a set of mechanisms

that fulfil these requirements.

3.1.1.2 Objectives

We assume that policies, including their measurable objectives, are typically private in the sense that

they need not be communicated explicitly to other parties (roles). Nevertheless, parties undertaking

particular roles may have to rely on other parties to assure that the measurable objectives of their

policy are met. To this end a party may decide to expose its expectations in the form of requirements

and delegate the enforcement of these requirements to other party (parties). We refer to such

requirements as publicly measurable objectives. An example of this mode of operation is when the

orchestrator attempts to assure a certain level of QoS (e.g., maximum delay, minimum bandwidth,

etc.) for a given type of service and to achieve this, the service resolution domain notifies the

network control/management plane to reserve network resources necessary to satisfy the demand.

Conversely, non-public (or private) measurable objectives are not communicated per se, but instead

parameters related to the service are exchanged between parties involved in service resolution to

define the allowable scope for subsequent decisions. In this case, information describing the

capabilities of particular domains to be used by other parties is exposed rather than explicit

requirements for them to meet. This may include both non-functional characteristics such as

network cost/performance or service cost/performance guaranteed/achievable in a given resolution

domain, but also functional characteristics like client address/location or a recommended list of

execution zones/service instances, etc. In case such capabilities are exchanged during the service

request resolution process they are said to define context of the request.

It should be stressed that the two generic approaches just mentioned, i.e., requirement exposition vs

capability exposition, are complementary with respect to each other. It is also important to note

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 14 of 71

Copyright © FUSION Consortium, 2014

that, in the area of network performance provisioning, the FUSION consortium has decided to focus

mostly on capability exposition mode of operation.

 Basic requirements 3.1.2

Below, we propose top-level requirements related to the use of policies for inter-domain service

resolution in FUSION. These requirements are partially derived from the discussion provided in

section 3.1.1 above, but are also inspired by useful and quite universal functionalities employed in

solutions known from other research domains as content delivery, e.g. [FPLS13] [PDBR14]. These

requirements will be used in section 3.2 to identify a set of protocol-level mechanisms that enable

policy-based service resolution in the FUSION architecture.

R1: For each party (or role as of section 3.1.1.1), there must exist a possibility to enforce its own

policies that have impact on the results of service request resolution.

In principle, there are two complementary options to achieve this goal. One option is for a party to

rely on other party(ies) and delegate the enforcement of desired policies to such external partner(s)

(e.g., this could be done via dedicated interfaces using agreed notation to describe the rules to be

implemented). The other option is for a party to get itself involved in the resolution process and

enforce desired policies on its own.

R2: Each party must have a possibility to protect confidential data (i.e., not to be shared with other

parties) when enforcing their desired policies.

One way to fulfil this requirement is to directly involve the interested party in the resolution process

so that it can enforce policies on its own. In technical terms, this means that such a party should

operate as a service resolver. This gives a clear indication of the mechanisms that should be available

to the orchestrator.

R3: There should be some degree of support for composite services.

We note this requirement applies to intra-domain resolution as well, and that composite services

define a complex case where policy enforcement may often require the use of centralised logic.

At present, we have identified two options of how service resolution of composite services can be

handled in the orchestrator layer or in the service resolution layer:

• finding the appropriate orchestrator module that is aware of the composite service graph

structure: such a module would work as a terminating service resolution with enhanced

logic for orchestrating composite services. The main role of the service resolution in this case

is to find this orchestrator module, which acts as an oracle, pass to it the parameters needed

and deliver the oracle’s response back to the requestor.

• finding a set of atomic service components under a given set of (service-dependent)

constraints by the service routing layer itself. This requires that the service graph structure is

injected in the composite service routing layers.

Section 9 contains an initial discussion on the complexity of resolution for composite services in both

options. A deeper study of the role of service resolution in supporting composite services is planned

for the next reporting period in the project.

3.2 Protocol-level mechanisms

We are interested in the mechanisms that the FUSION service resolution layer must provide to

support different players in their policy enforcement tasks. In general, two types of such mechanisms

can be distinguished on protocol level:

• out-of-band mechanisms apply to the information exchange between parties/domains that

takes place outside of the service request resolution process. This information is

disseminated independently from the execution of service request resolution tasks and

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 15 of 71

Copyright © FUSION Consortium, 2014

allows service resolvers to build their own forwarding and resolution table that subsequently

is used by them on per-request basis for the resolution purposes,

• in-band mechanisms (per-request mechanisms) are used during the phase of resolving

individual requests sent by clients and are built into the service request resolution protocol.

The information exchanged to resolve a given request can be reused for subsequent

requests, too (similar to the caching of DNS responses by DNS resolvers).

In an ideal case the set of related protocol-level mechanisms should be limited. For reasons of

scalability, this applies in particular to in-band mechanisms.

 Out-of-band enforcement 3.2.1

Out-of-band enforcement mechanisms will typically consist in filtering the information to be exposed

in the resolution protocol to neighbouring domains. For this purpose appropriate rules can be set in

service resolvers to control the level of detail of the information exchanged. In such a case, a

dedicated API can be used to allow external function (orchestrator and/or service resolution domain

provider) to deploy desired policies in service resolvers. Although the details of such an API are out of

scope of this report, it is nevertheless expected that most often they will have no impact on the

routing protocol. Altogether, no specific protocol-level mechanisms will be required to deploy a wide

variety of policies for off-path enforcement procedures. We note also that off-path enforcement as

considered here supports requirement R1 as applied to the orchestrator and service resolution

domain provider.

It may turn out that in case of certain off-path rules some form of standardisation may be needed,

e.g. when rules for policy enforcement have to be implemented in a coordinated way across

multiple service resolvers (service resolution domains). Such coordination among service resolution

nodes may imply the introduction of appropriate protocol mechanisms. However, at current stage of

development of FUSION we consider this option to be theoretical and postpone further studies in

this area until a real need for the introduction of such coordination is identified.

Advantages: policies are enforced only in service resolvers so some (typically significant) part of the

required processing effort can be done outside the fast (request forwarding) path. Also, the service

resolution signalling can take shorter (optimised) paths compared to the case where the orchestrator

has to be involved in the resolution process.

Disadvantages: depending on the policy, trust concerns may arise when implementing third-party

policies; sensitive information may have to be exposed to the service resolution plane which may rise

additional trust concerns.

 In-band enforcement 3.2.2

In-band policy enforcement assumes that each interested party is involved in the resolution process

on a per-request basis. To support this capability it is necessary to provide mechanisms for in-band

invocation of policy enforcement parties and for in-band exchange of information to be handled by

policy enforcement rules. In the context of FUSION we identify preferred schemes for these two

types of functions.

3.2.2.1 In-band invocation mechanisms

In-band invocation allows to trigger an action of a party interested in applying its policies to a given

request. We consider two basic mechanisms to enable this functionality, namely resolution hints and

orchestrated request forwarding.

Resolution hints mechanism, similarly to routing hints proposed by other frameworks, e.g. [SAIL13]

and [NDGK12], uses a dedicated API to allow service resolvers consult the orchestrator in deciding

what action to perform regarding a given service request. On one hand, this mechanism potentially

provides the orchestrator a great flexibility in enforcing desired policies. On the other hand, it

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 16 of 71

Copyright © FUSION Consortium, 2014

requires the introduction of a dedicated information model that will be shared by the orchestrator

and service resolvers. Although this solution may prove to be desirable in the long term, we prefer in

the current stage of the project a more lightweight approach as described below. We note that the

use of resolution hints allows to meet requirements R1 and R2 as applied to the orchestrator.

Orchestrated request forwarding simply assumes passing service requests to the orchestrator based

on predefined criteria. In this case the orchestrator plays a role of a specialised service resolver and

depending on the policy to be enforced it either forwards the request to the next-hop service

resolver or sends it back to the resolver who triggered orchestrated forwarding. In the latter case,

service resolvers that trigger orchestrated forwarding may have to implement additional

mechanisms to cope with such requests being sent back by the orchestrator. Thus, the operation of

this scheme resembles to the one found in IMS at the interface between S-CSCF and application

servers to trigger services [WZKC13]. We note that orchestrated forwarding allows to meet

requirements R1 and R2 as applied to the orchestrator (so in many cases it can be equivalent to

resolution hints described previously); it may also contribute to fulfilling requirement R3 provided

that orchestrator is capable of coordinating composite services (such a model would resemble the

one adopted in [NGSO11] for the service composition function).

Advantages of orchestrated forwarding: fulfilment of requirements R1 and R2 regarding the

orchestrator role so many trust concerns can be eliminated; ability to implement complex policies.

Disadvantages of orchestrated forwarding: service resolution signalling can take long paths and thus

have a negative impact on service resolution delays; adds complexity to service resolvers and to

orchestrator.

3.2.2.2 Information exchange

Information exchange involves two interrelated issues to be solved, namely the pattern for passing

signalling messages among the parties and the general form of the information to be actuated upon

by the parties involved.

The design decision in FUSION is to adopt a simple scheme for the selection of appropriate service

instances based on the use of candidate (or ranking) lists that contain execution zone identifiers or

service instance identifiers, possibly depending on the type of the message (request, answer). A

general idea is to use a candidate list (ranking list) that is passed within the request/answer along the

signalling path to negotiate the final choice of service instance among the parties. Given this scheme,

the results of policy enforcement decisions are exposed during the resolution phase in the form of

current composition of the candidate list attached to the resolution messages. Of course, additional

rules for this negotiation may be needed, e.g., the list may not be extendible and at most one

instance may be suspected to be chosen as a final result of the resolution. Appropriate conventions

applicable to this process will be subject by the FUSION consortium to further studies. We note the

use of candidate lists contributes to fulfilling requirement R2.

Advantages: relies on information that by definition is standard for FUSION service resolution so

certain trust concerns can be limited; simple form, able to support a wide range of different policies;

can be combined with different triggering schemes; helps to avoid the dissemination of excessive

amounts of service state information in case it may change very frequently (late binding effect) or in

case of low-popularity services.

Drawbacks: may be unable to express certain complex policies; can increase signalling traffic and rise

processing requirements due to the use of (potentially long) candidate lists.

3.3 Principles of operation

In this section we present basic principles of the operation of FUSION service resolution layer in the

multi-domain scenario. Throughout this presentation, the use of the mechanisms defined in section

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 17 of 71

Copyright © FUSION Consortium, 2014

3.2 is assumed to enable policy enforcement especially during the resolution phase. Therefore we

take the particular perspective of service request resolution to organise the discussion that follows

and consider its two following aspects:

• domain of resolution, i.e., the domain where the decision about the selected service instance

is taken for a give request

• collection and exchange of information needed for multi-domain service resolution.

Both of the above aspects are discussed in the following subsections. We note that we assume

relatively high level of abstraction here as the goal of this section is to provide basic concepts for

multi-domain operation of FUSION service resolution layer. Selected interdomain aspects of service

state exposition and query resolution are described in more detail in sections 6 and 7, while the

description of the protocol adopted by FUSION for resolution purposes is provided in section 8.

 Domain of resolution 3.3.1

We found the two simplest (extreme) cases of service resolution scenario to be when the resolution

decision is taken either in the domain of the requesting client or in the domain of the best instance

of the service being requested. These two cases are illustrated in Figure 3 and Figure 4 respectively.

Figure 3: Resolution in client domain.

The main steps of resolution in client domain are shown in Figure 3. It can be seen that in this case

the domain that hosts service instances (represented by service resolver SR2) is not involved directly

in the resolution process (although domain SR2 disseminates the information on service availability

and on session slots and thus indirectly impacts local decisions taken by SR1). It is also to be noted

that in this basic scenario network-level information is gathered by resolution domains (SR1 in this

case) on their own using all available means provided by the network exposition interface (see also

section 5). The overall result is that domain SR1 is able to resolve to the best instance on its own

based on the information gathered outside of the resolution process and possibly applying policies

that are known locally.

Resolution in best instance domain (see Figure 4) defines the opposite case to the above and it

leaves the final decision regarding instance selection to the terminating resolution domain (SR2 in

this case). In general, the role of the originating domain SR1 in this scenario is not null as SR1 can

decide upon the terminating domain in case when multiple terminating domains are available (not

show in the figure). We note that in the latter case the decision taken by SR1 may well be policy-

based. Moreover, message forwarding rules of the resolution protocol may allow the response from

Z2

Z1

SR2

G1

G2

SR1

Si1

Si2

C

x1

x2

x3

x4

a1

a2

Service resolution

signalling

(1) SR2 announces service availability (IP endpoint, slots)

to other domains

(0) SR1 collects information on network paths (using 3rd party

monitoring tools, via exchange with other domains, etc…)

SR1 service

resolution DB

(2) SR1 resolves request from C to (e.g.) Si1

(0)

(1)

(2)

data paths

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 18 of 71

Copyright © FUSION Consortium, 2014

SR2 to the client to also be forwarded through SR2. As we will see later in this section, this feature

enhances the set of available options for policy-based service request resolution.

Figure 4: Resolution in best instance domain.

The two basic scenarios described above can of course be generalised assuming the use of the

candidate list mechanisms introduced in section 3.2. A generalised scenario where both originating

and terminating domains as well as the orchestrator are involved in the resolution process is shown

in Figure 5.

Figure 5: General resolution scenario with candidate lists.

In this scenario, resolution primitives are forwarded among the resolvers and additionally they are

sent to the orchestrator. In each step a list of candidate service locators is exchanged between

respective entities so that each of them may apply its policies to the list. The result of applying a

policy is exposed in the form of the set of potential choices (candidates) available for the next

resolution step. Actual conventions that should apply while changing the candidate list is an open

topic, but we note that in other frameworks (e.g., SIP/SDP for codec negotiation) it is often assumed

that the initial choice can be narrowed down and never extended in subsequent steps. We also note

Z2

Z1

SR2

G1

G2

SR1

Si1

Si2

C

x1

x2

x3

x4

a1

a2

resolution

signalling

(2) C2

(3) C3

(1.1) C11

(1)

ORCH

(2.1) C22Candidate list C1

(1.2) C12
(2.1) C21

(4) C4

C11, … candidate list in step 11, etc.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 19 of 71

Copyright © FUSION Consortium, 2014

that the communication between service resolvers and the orchestrator can be based on either a

dedicated API (routing hints) or the resolution protocol itself, but it seems that the actual form of this

communication is not critical. What is important, this capability effectively resembles to redirection

mechanisms in other protocols (e.g., HTTP and SIP).

 Collection and exchange of information 3.3.2

The information to be advertised across service resolution domains can relate to services (e.g.,

service slots, histograms) and to network paths that can be used by connections between clients and

service instances.

Session slot/histogram advertisement for the inter-domain scenario is discussed in more detail in

section 6.

As explained in more detail in section 5, the primary model adopted by FUSION to cope with network

level performance during service resolution and orchestration builds on the use of network distance

information provided by systems external to the FUSION platform. Nevertheless, there may arise

situations when service resolvers do not have sufficient information about network costs. For

example, this may occur for certain services that are served in very distant domains and when

available network proximity systems lack or do not provide this information. In such a case some

form of support from FUSION service resolution layer for the exchange of related information may be

helpful. However, this rises practical concerns as explained below.

Theoretically, the exchange of network proximity information within service resolution layer can be

done either out of band or in band (during the resolution process). We note that from the service

resolution perspective, to be useful such information has to be very specific. One possible solution

assumes announcing metrics related to well-known gateways (or landmarks) that would serve other

domains as reference point to enable them reasoning about actual end-to-end costs between clients

and service instances. For example, referring to Figure 3, in order for resolver SR1 to be able to

derive the end-to-end network path cost (e.g., delay) from client C1 towards service Si the following

would be necessary:

(a) service resolver SR2 would have to announce to SR1 actual cost from each gateway G1, G2 to

each zone (location) Z1, Z2,

(b) for each location Z1, Z2, resolver SR1 would have to know actual gateway that handles traffic

forwarded from C towards Z1 and Z2, and

(c) only based on a) and b) could SR1 calculate the actual cost from C to Z1, Z2.

We note also that the detailed information to be exchanged will depend on the resolving domain and

the direction of traffic flows. Overall, we believe that exchanging network level information within

the service resolution layer in the multi-domain scenario increases implementation complexity of

service resolution plane and may raise scalability concerns. Therefore we defer deeper studies on

this topic until a sound use case is identified to justify the introduction of this option.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 20 of 71

Copyright © FUSION Consortium, 2014

4. SERVICE RESOLVER

Figure 6 presents an overview of the different functional blocks of one service resolver, together with

the interfaces exposed by these elements.

Figure 6: Functional decomposition of the service resolver

The core functionality is provided by the service request forwarding table; which is queried when a

service request is received via the query interface. For each tuple (client IP, service ID), the

forwarding table specifies one of the following actions:

• Resolution: the service resolver will answer the query with an IP/port tuple of the selected

service endpoint. This endpoint is used as destination address by the client when establishing

a data plane connection to the service.

• Forward: The next service resolver to forward the request to, in case the request cannot be

served within the service resolution domain.

The forwarding table is populated by the mapping component, which takes various inputs into

account:

• Network State: this module builds a database that tracks network metrics on the end-to-end

path between client IPs and execution zones and network topology information. It takes

input from the network state exposition interface. This interface is discussed in section 5.

• Service Availability: services are identified by service ID. For each service, this module tracks

the availability and current service load per execution zone. This interface is discussed in

section 6.

• Service Resolution Policy: the orchestration layer (discussed in D3.2) can configure specific

resolution policies via the corresponding interface. Service Resolution policies may impose

restrictions on the network path between client and service instance, like geographic

restrictions, minimum bandwidth or maximum latency. Policies can also be related to

deployment and orchestration, e.g. favour specific zones, or on total service performance,

e.g. maximum latency including network latency and service response time).

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 21 of 71

Copyright © FUSION Consortium, 2014

• Network Routing Policy: configured via the corresponding interface, these policies are

related to the underlying transport network (for example traffic engineering).

Lastly, the service resolver may expose information on service instances running in its execution

zones to service resolvers running on other domains. The advertisement of such information is

subject to orchestration and/or resolution policies, as discussed in section 3.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 22 of 71

Copyright © FUSION Consortium, 2014

5. NETWORK STATE EXPOSITION

In theory, service resolution nodes can use a broad range of network-level parameters for running

resolution algorithms. Packet delay, loss rate, bandwidth and prices can be mentioned as the most

popular metrics.

Estimation of most of those parameters requires the collection of network monitoring information in

real or near-to-real time which itself is a non-trivial task. Collected data sets will typically comprise

information about network topology and network state (router status and load, link status and

utilisation) to build network maps of ISP domain. Topological and routing information within domain

can be retrieved from IGP protocol. Annotations like link utilization and other metrics can be

gathered using SNMP. BGP information can serve to find egress points for traffic while Netflow or

similar tools can help identify ingress points so that actual network paths for all prefixes can be

determined. Moreover, the above information can be augmented utilising performance maps of own

domain obtained using passive probes or from active tools based on, e.g., OWAMP and/or TWAMP.

The above tasks apply in principle at the level of a given domain where the access to respective

information can be enabled relatively easy for organisational purposes. Therefore, to complement

the overall network view, performance maps obtained from other ISPs or third parties, e.g., RIPE

Atlas, can be used to extend the coverage of network maps beyond the own domain of an ISP.

Theoretically, gathering and processing all needed information (from raw measurements to

information directly used by the resolution procedures) can be done by the service resolution layer

on its own. We note however that from the point of view of actual resolution procedure/algorithms

network information presented at relatively high abstraction level is sufficient. Therefore, and

considering the emergence of IETF standards for dissemination of network level information, we

propose the use of ALTO protocol [APYA14] at the interface between FUSION service resolution layer

and network monitoring for network state exposition.

Depending on policies and/or the feasibility of specific information, service resolvers may require

that information directly used for resolution purposes be available at different levels of granularity.

Desired objects to describe are execution zones, services, service instances, but also aggregates such

as sets of execution zones or sets of clients. We note that ALTO provides great flexibility in terms of

both type and granularity of information for annotated network maps. In particular, the concept of

Provider-defined Identifier (PID) seemingly covers all the above requirements in terms of granularity.

Similarly, ALTO cost maps define one-way connections between pairs of PIDs and provide a great

freedom in defining the semantics of annotations. Although ALTO protocol is based on HTTP and

JSON which may rise performance concerns, we believe this need not be a key aspect for FUSION. In

fact, one can always adopt the implementation to cater for actual constraints and even define more

lightweight notation similar to, e.g., DNS.

Lastly we note that similar information as the one needed for service routing should also be available

to the orchestrator for deciding on service instance placement based on network metrics. Adoption

of ALTO also in this case makes it a perfect solution for network state exposition within the whole

framework of FUSION.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 23 of 71

Copyright © FUSION Consortium, 2014

6. SERVICE STATE EXPOSITION

In order for the service resolution to make informed choices regarding service selection, service

resolvers need to have several pieces of information: service availability per execution zone and

network performance data. Service selection will run an optimisation algorithm which will try to

maximise user quality of experience and minimise operators’ costs. Here we deal with the service

specific data.

6.1 By application components

After a set of service instances is instantiated in an execution zone, the zone manager is responsible

to inform the local service resolver. This involved passing several items that will then be selectively

propagated in the resolution system. A crucial concept is that of "session slot”. This is a common

measure to any service that quantifies “serving one user”.

The following data is passed between the execution zone and the local resolver:

• Number of currently available session slots

• Number of currently used session slots

• A distribution, in form of an histogram, of service times of the sessions running in that

execution zone. This will be potentially used for resolvers to forecast what will be near future

usage of a given service and choose an instance that minimises blocking probability (and load

balances more efficiently)

• The utility function of the service regarding quality of experience. This is a function of metrics

like end-to-end delay and/or available bandwidth. The values of the utility vary between 0

(the best) and -1 (the worst).

6.2 Multi-domain service state exposition

In order for resolution to work across several domains resolvers need to organize themselves in an

overlay. Here we explain how the process works:

1. Each domain has a logically centralized resolver that answers queries from the domain’s

clients, receives registrations from endpoints inside the domain and interacts with resolvers

in other domains to exchange service instance availability. We refer to this exchange as

routing.

2. A domain will typically be equivalent to today’s Autonomous systems. If an AS is too big it

can break it in several domains. Finally, domains can consist of federated domains between

several organizations or providers where they have similar network characteristics to the rest

of the world. We expect this last feature to reduce the total number of resolvers visible to

the rest of the world.

3. After a new service instance gets registered in its local resolver, this information will be

propagated to other domains. After this process finishes, clients will be able to resolve

names to locators. We detail the routing process first and then the resolution process.

4. Resolvers can connect to any resolver in the Internet. They are not constrained by layer

3/BGP connectivity. This can happen for the exchange of routing information and forwarding

of resolution queries. They need to find, through another mechanism (email, website, face-

to-face) at least one address of another resolver. Resolvers will have an ID and a public key

associated with them.

5. Routing consists of two distinct steps: Catalogue sharing and service subscription.

6. Catalogue Sharing: In Catalogue sharing each domain advertises that it has a new service

available. This information consists of serviceID, utility function, representative locator and

resolver locator. The utility function will define the characteristics of the service, the

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 24 of 71

Copyright © FUSION Consortium, 2014

representative locator will allow other locators to assess the potential performance of

connections to instances running in that domain. The resolver locator will allow other

resolvers to connect and subscribe to updates from that service. In case of larger domains,

multiple locators can be advertised.

7. The Catalogue can be propagated directly (to resolvers that are directly connected), or

forwarded through a multicast/spanning tree. The former raises less trust issues but the

latter produces less traffic and allows for a resolver to only need to know of one other

resolver. Note that this information is not very dynamic. An update is only sent when a new

service is created, all the service instances have been deleted or there are significant changes

in network connectivity (e.g. change of traffic engineering policy). It does not generate new

updates every time a service instance is created.

8. The propagation of Catalogue information can further be optimized by not propagating

information to domains where the service utility would be minimal (e.g. availability of a

service that requires 10ms delay should not be propagated to far away domains).

9. Service subscription: Whilst receiving Catalogue messages, resolvers decide if they should

subscribe to routing updates from a given service from a given domain. They will try to

contact close domains before and obtain enough diversity of service availability. They will

expand the subscriptions until enough instances are found. Note that potentially they will

have to connect to every other resolver in a full-mesh. These should be in the order of

10,000s, which a modern operating system can cope with. Moreover, the routing functions

of a resolver can easily be parallelized. Yet another way to reduce the number of

connections/relationships would be the existence of resolvers run by neutral organizations

that aggregate routing information and make resolving decisions on their behalf. These could

be run by a myriad of types of organizations: top-level domain administrators, non-profit

organizations, cooperatives or a new business entity. Note, however, that incentives issues

would arise.

10. After subscribing to a given service, a resolver will start receiving updates from that service in

that domain. This will include service slot information and the locator(s) for which the name

is mapped. A flag detailing if the resolution can be done locally or remotely is also included

(more on this below). These locators can be of different types (see Appendix A) including the

locator of the resolver (and not final instance) in the case of remote resolution.

11. Service resolvers must either propagate service availability information (possibly after

aggregation) received from their neighbours or register in the catalogue as “proxies to other

domains” so that requesting domain resolvers can subscribe to them for routing updates in

usual way.

12. By the end of the process, every resolver should be able to deal with any query for any

existent service through the resolution process.

13. Resolution: Resolution takes place when a client wants to resolve a name to a locator. It can

happen in two ways: Locally (in the client’s domain) or remotely (in another service

resolution domain closer to the best service instance).

14. As mentioned before (in section 3.3.2), resolvers are equipped with the capacity of assessing

network distances to any IP address in the Internet. This decision will take into account: the

service utility function, the location of the user and the traffic cost in reaching all potential

instances.

15. In local resolution (cf. Figure 3) the resolver selects the best service replica and returns

immediately the resulting locator to the client. Local policies may be applied during this

process.

16. In remote resolution (cf. Figure 4) the resolver chooses to which resolver to send the query

and forwards it. At the other end the remote resolver will decide which instance to return

which gets then returned to the user. It may apply its local policies for the selection as

described in section 3. The origination resolver can also restrict the choices that the remote

resolver returns based on its local policies.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 25 of 71

Copyright © FUSION Consortium, 2014

17. Clients have the option of restricting even further the results (by specifying extra QoS

constraints in requests) and to receive multiple locators. Applications can make use of these

to achieve resilience, or parallelism.

6.3 By service endpoints/clients

Our architecture includes client quality of service experience as a feedback loop that can help for

better service selection. This can improve the accuracy of service resolution, in particular because is

server specific unlike many other network data, but it is not necessary for the resolution to take

place. Resolvers have a plethora of other mechanisms to obtain this information.

After clients use the service they send performance information to their local resolvers. This consists

of observations between locators for a given service and corresponding final metrics like goodput,

loss and delay. The information is similar to that sent by RTCP [RTCP] but sent to the resolver rather

than the end system. It should be noted that the use of QoE feedback is an optional feature and not

essential for FUSION, but will provide a useful user point-of-view of actual performance to augment

monitored network metrics.

There is an incentives issue here since this will require service developers to provide this information

through our interface. We believe that more accurate resolution will be a strong enough incentive.

We are also aware that QoE reporting can be faked. Resolvers may have to apply statistical tests to

remove outliers.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 26 of 71

Copyright © FUSION Consortium, 2014

7. QUERY

This interface implements the main primitive of the service resolution layer. Using this interface,

clients can request the best matching service instance by name. The actual data communication is

service-specific and completely agnostic to FUSION.

7.1 Service ID Namespace

The FUSION service resolution layer will resolve a service ID to an IP/port tuple that is publicly

addressable. The service ID identifies the endpoint of a service, as defined in the service manifest by

the service provider or orchestrator and advertised by the zone gateways.

Obviously, the service resolution will have multiple endpoints per service name, at least one per

execution zone that hosts the service. But there is also no unique mapping between a particular

locator to the corresponding service name. Consider an atomic service that is advertised as SID_A,

but that is also defined as the endpoint of a composite service with identifier SID_B. In this case, the

IP/port tuples of the instances of this particular atomic service will be mapped from both SID_A and

SID_B.

The FUSION resolution layer operates on a flat name space for service IDs. Hierarchical name

structures, as e.g. proposed by Van Jacobson [VST09], are based on organizational structures, folder

structures, etc. However, such naming schemes introduce fixed interdependencies that are avoided

by flat name spaces. In our view, service IDs should be independent from any hierarchical

organization, as they will be used to refer to instances running in any zone of any service resolution

domain.

However, although the service resolution layer does not assume any hierarchy in the service name,

the use of hierarchy by service providers (e.g. starting each name with their domain name) is not

prohibited but will be transparent to the service resolution layer.

Although flat name spaces do not allow for name aggregation by service resolvers, we argue that the

impact of using flat namespaces on the scalability of the FUSION service resolution layer is limited:

• There is no resolution authority that must be queried for a particular service ID. Each service

resolver that knows the locator of an instance that matches the service requirements may

answer the request. The list of registered locators can differ per service resolution domain.

This is in contrast with DNS, where each domain name is governed by a particular

authoritative name server. Other DNS servers cache resolution answers, but ultimately the

service ID is always resolved to the same IP address
4
 mandated by the authoritative name

server. The FUSION service resolution layer is conceived in a different way, where each

service resolution domain has the autonomy to resolve service IDs to different instances.

• Flat names allow the use of hashing techniques for look-up operations in the forwarding

tables of service resolvers. The population of these forwarding tables by the service request

resolution algorithms is decoupled from the look-up operations and thus does not stall the

request resolution.

7.2 Resolution policy

Some services will not be available in all domains and corresponding requests will have to be

resolved to an instance in a remote domain. There are different options regarding the authority for

service request resolution and the actions a service resolver can take to process a service request.

4
 When DNS load balancing is used, other name servers might cache only part of the aliases. However, all these

aliases are provided by the authoritative name server.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 27 of 71

Copyright © FUSION Consortium, 2014

Below, we discuss these different modes of operation that are supported by the FUSION service

resolution layer, in decreasing order of generality:

1. Requests can be resolved by any service resolver in any domain

This is considered as the default operation mode of the service resolution plane. Service resolution

domains advertise service IDs, locators (IP/port) and load information to other (remote) domains. For

such services; service resolvers can resolve received requests to service endpoints advertised by any

execution zone, even in other domains.

In this scenario, service endpoint advertisements can be cached by service resolvers in other

domains which improves the stability of the service resolution plane. The main challenge to be

overcome is that information on service availability may be inaccurate or out-of-date.

2. Requests can only be resolved in a particular domain

If a service resolver in domain A resolves a request to an instance hosted in domain B, the service

requestor will in most cases subsequently connect to the selected instance and consume network

and execution zone resources. For this reason, a service resolution domains might prefer to keep

better control of the resolution of requests to instances within their domain.

The most straightforward way to achieve this is to simply not advertise service instances to other

domains. However, this reduces the service consumption in contracted execution zones as no traffic

from clients in remote domains can be attracted. Instead, the FUSION service advertisement

interface must support this “only-local-resolution” policy by allowing to only advertise the availability

of a particular service at a more abstract level without specific locators. This forces server resolvers

to forward the request to the advertising resolution domain, as they have no information on the

exact locators but are only provided with a list of candidates, as explained earlier in section 3.3.2.

3. Requests can only be resolved at the selected execution zone or by a service component

Some services might prefer handle instance selection internally, rather than relying on the FUSION

resolution plane. One relevant use case is cloud gaming, where the performance of candidate

instances must be evaluated against service-specific criteria (e.g. using evaluator service) and the

service provider wants to keep control of intra-zone resolution.

In the most basic scenario, the FUSION resolution plane is only used to resolve the request to a

locator of this service-specific orchestrator module. However, the FUSION resolution plane may

provide additional functionality, e.g. by sending the request to the zone with the lowest latency.

7.3 Invoke

The default operation mode of service requests is to return the locator (or a list of locators) of the

best instance by service resolvers. In this mode, the request message is never received by the service

instance itself and the client establishes a data connection out-of-band of the FUSION service

resolution plane.

Another mode of operation is to directly send a message to an instance of the specified service ID.

This avoids an additional round-trip time and extends the functionality provided by the FUSION

service resolution plane. An example scenario is a cloud gaming service that wants to perform its

own service choreography. Using the invoke mode of the query message, the request is resolved to a

suitable zone and directly delivered to the service endpoint. The service choreography component

can then immediately return the list of locators of the selected components (note that such a

choreography component could be thought of as a special service-specific resolver).

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 28 of 71

Copyright © FUSION Consortium, 2014

8. NSRP PROTOCOL DESIGN

This section provides an overview and motivation for the new Networked Services Resolution

Protocol: NSRP

We analysed the potential advantages and disadvantages of deviating from DNS style based protocol

towards a text based protocol like HTTP 1.1 (HTTP 2.0 also moved towards a binary based protocol).

After careful consideration we decided to stick with a binary protocol for the following reasons:

� The data being exchanged contains only limited amount of text (the names being

subscribed. The majority of the data consists of IP addresses, IP prefixes, ports, options

and flags. Binary representation reduces the amount of data being transferred. This

comparison also applies if we compress both options. Compressing text based data can

achieve similar data sizes when large amounts of data are exchanged in the same

message. This only happens occasionally in our architecture (typically in bootstrapping a

resolver with service name/address data).

� Parsing can be a significant overhead for resolution servers. The amount of

requests/subscribes can be significant which will increase the processing requirements of

resolver software.. It will also introduce extra processing delay, especially if a message

needs to be forwarded to several resolver.

� Less errors: As stated in [HTTP2], binary protocols "are much less error-prone, compared

to textual protocols like HTTP/1.x, because they often have a number of affordances to

help with things like whitespace handling, capitalization, line endings, blank links and so

on. For example, HTTP/1.1 defines four different ways to parse a message; in HTTP/2,

there’s just one code path."

We also considered the use of REST/HTTP: Although REST/HTTP provide advantages for application

developers they incur a significant overhead in data transmission and processing time with no

benefits for name resolution.

The biggest disadvantage of a binary protocol is human readability and ease of debugging. Given that

name resolution is conceptually placed between the application and network we don’t see any need

for human readability. Debugging can be solved with a purpose built tool like a Wireshark plugin.

The protocol consists of the following messages with several options which are further detailed in

Appendix A.

1. REGISTER/UPDATE: Used by a Zone Manager to advertise to the local resolver the existence of

one or more service instances. The message is sent to the local resolver and is continually

updated

2. SUBSCRIBE: Used by resolvers to subscribe to service updates from other resolvers. It is also

used to request Catalogue Information.

3. QUERY: Used by a client to convert a name to one or more locators. This message may be

propagated to other resolvers.

4. DATA: Data containing mappings from name to locators. It is sent in response to a SUBSCRIBE

(both Catalogue and Service subscription) or to a QUERY

5. QoE REPORT: Messages issued by the clients to report quality of experience. This should serve as

input to service instance selection

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 29 of 71

Copyright © FUSION Consortium, 2014

6. HELLO: Initial message exchanged by resolvers to authenticate themselves

7. ERROR: Error message sent in response to a QUERY, SUBSCRIBE, REGISTER, QOE REPORT or

NETWORK_DATA_REQUEST

Before we embarked in defining a new protocol we analysed if DNS could not be used to achieve our

goals. Here we compare our protocol with two other possibilities: unchanged DNS and a potential

extension of DNS that changes the server to server protocol but keeps intact the client to server part.

NSRP Features DNS DNS in clients; modified

server to server protocol

Name to Locator Resolution

of arbitrary name spaces

Not possible Possible with some

restriction on names (63

bytes between “.”s and only

letters, numbers and the “-“

symbol.

Replica management, load

balancing

Not possible Possible but without ability

of service being able to

specify utility function or use

histogram

More complex locators Some combinations are possible (for example SRV RRs allow

for port numbers). More complex result, like containing

more than one IP address would require new RRs to be

defined)

Dynamic updates to client Not possible Not possible

Direct invocation Not possible Not possible

Client restrictions on results Not possible Not possible

Authentication at source Not possible Not possible

As can be seen a substantial set of features cannot be obtained with any of these two possibilities. A

small subset, however, can be implemented by maintaining the client-to-server interface which be

used as temporary deployment strategy.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 30 of 71

Copyright © FUSION Consortium, 2014

9. RESOLUTION ASPECTS OF COMPOSITE SERVICES

Composite services are registered via their manifest, specifying the individual components to the

orchestrator layer. In this section, we want to discuss the impact of composite services on the design

and implementation of the components involved in service request resolution.

In section 9.1, we discuss the implications on the zone gateway. The zone gateway can assume a

service resolution role when instances of each component are available in the same zone. We also

highlight the advertisement of session slots for composite services.

Although we can safely assume that the zone gateway can interact with the zone manager and thus

has access to the structure of the composite service, a more fundamental design decision is to what

extent this service graph should be known to the service resolver, as to support composite services

across execution zones. This is described in section 9.2.

9.1 Zone gateway

The zone plays an important role in the advertisement of composite services, as well as in the

scenario of dynamic service graph deployment in a single zone, where multi-configuration service

components are reused across multiple composite services. The latter functionality creates a more

open service ecosystem with run-time chaining of components developed by service providers.

 Advertisement of composite service availability 9.1.1

The zone gateway is responsible for the advertisement of service availability to its service resolver. In

D3.2, we introduce the notion of service session slots. Instances of a service component not only

report resource session slots (determined by the number of available resources and the number of

running connections), but also service session slots, reflecting how the available resource session

slots are allocated over the different configurations for this instance.

Hence, the service availability that must be reported to the service resolvers are better reflected by

the number of service session slots. For atomic services, this number can be calculated as described

earlier in section 2.1 by summing the numbers reported by each instance. The situation is however

more complex for composite services. Consider a composite service that comprises service

component A and service component B. In this case, the number of session slots to be reported is the

minimum of the available session slots for service A and for service B. Another complexity is that one

the serving of one incoming client connection could require multiple session slots (e.g. a composite

service that requires two decoders). Clearly, the zone gateway must take into account the service

graph that has been provided in the service manifest.

 Zone-internal resolution 9.1.2

In Figure 7, four service components are involved in three composite services. Service component A

has been configured with two session configurations (A-B and A-C). As explained in D3.2, the two

service configurations of service component A has been mapped onto different ports. Depending on

which port a client connection is received, service component A will request the zone gateway, who

assumes the role of service resolver, for the locator of an instance of service B or an instance of

service C. Hard-wiring actual instances would limit the orchestration flexibility and deployment

resiliency (e.g. when a component fails), especially for long-lived sessions. Moreover, this would

prohibit dynamic scenarios where components are added to and removed from the service graph at

runtime.

In the remainder of this section, we discuss two different patterns of data connection between

service components that must be supported by the zone gateway. The discussion is supported by

Figure 7. It is important to stress that the arrows on this figure indicate the data flow between

components. Service requests to the zone gateway are not depicted.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 31 of 71

Copyright © FUSION Consortium, 2014

Figure 7: Patterns for the flow of data across service components

On the left side, service component A contacts the zone gateway for each session. Depending on

which the port the client connection is received, component A will request the gateway for an

instance of component B or component C. The main advantage of this scenario is that it allows for

fine-grained resolution per session for a composite service. The zone gateway must only take into

account the number of available resource session slots (although it must still map these to service

session slots for advertisement to the service resolver). The management of service session slots is

handled by the zone orchestration layer.

On the right hand side, we show a different orchestration pattern for connecting instances. In the

ambassador pattern, proxy components manage the load-balancing between replicas of the same

component. This pattern is heavily used in the emerging container-based virtualization solutions like

Docker, where it is currently the de facto standard to connect two containers that run on different

hosts of the same execution zone (data centre). In this scenario, the instance selection process

comprises two steps:

• First, the zone gateway will return the proxy IP/port for the requested service component.

• Second, the data connection will be load-balanced to one of the instances. Load-balancing is

handled per-service.

Given the relevance of this deployment scenario, we must support it in the FUSION architecture and

implementation. The main challenge here is that the proxy only performs basic load-balancing and

does not take into account service characteristics or the location of the requesting component. In the

example of Figure 4, the proxy for service component C does not take into account whether the data

connection is originating from an instance of service A or an instance of service D.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 32 of 71

Copyright © FUSION Consortium, 2014

Figure 8: Multiple proxies for the same service

A possible solution is to group the different instances behind multiple proxies (e.g. one proxy per

node on which the instance is deployed). In this case, the zone gateway takes an intermediate role

and selects the most appropriate proxy, rather than the most appropriate instance. The drawback of

this scenario is in the tighter coupling between the zone gateway and the zone orchestration layer.

9.2 Composite service resolution

As described in section 3.1.2, we discern different architectural options for composite service

resolution:

• The service resolution layer returns a list of all instances

• The service resolution layer is unaware of the service graph. This means that each service

component individually requests the next instance in the service graph, leading to potential

suboptimal deployment.

In the latter case, the composite service graph must be injected into the service resolution layer (one

possible option for doing this is to use redirections/routing hints sent to the orchestrator as

suggested in section 3.3.1, Figure 5). This graph describes the individual components of the service

(e.g. service ID) and their interconnection with a possible cost metric. Introducing the service graph

into the service resolvers however entails bringing additional complexity for the forwarding process.

For each component, the service resolution must select the optimal instance.

When the service request resolver receives a request for a composite service, it needs to create the

corresponding instance graph from the deployment graph. An example is shown in Figure 9. In this

example, the composite service exists of four service atoms A-D, with service atom A serving as the

endpoint for clients to connect to.

Figure 9: Composite service with four atomic services

When a request arrives for the composite service, the service resolver builds the service graph

shown in Figure 10. At the time of the request, there are two available instances for atomic services

A, B and D, while there is only one instance available of atomic service C. The service resolver must

now determine the most appropriate subgraph, that contains exactly one instance of each atomic

service. In general, shortest path algorithms cannot be applied since there is not necessarily a single

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 33 of 71

Copyright © FUSION Consortium, 2014

source and single sink node. Moreover, the order and size of the instance graphs rapidly increase

with the number of instances of each atomic service. If N instances of atomic service A and deployed,

and M instances of atomic service B, then the graph will contain NxM edges since in principle each

instance of B can be reached from any instance of A.

Figure 10: Service resolution must pick the best combination of instances

One possible heuristic is to keep the service graph transparent to the service resolver. In such a

scenario, the service resolver would always return the instance with the lowest cost from the

requesting client. Referring to Figure 10, the service resolver would first return instance A1 to the

client. In turn, this instance would be routed to instance B1, and this instance would in turn be

resolved to C1, resulting in a total instantiation cost of 28 (10 + 15 + 3). However, the lowest

subgraph consists of (A2, B1, C1) and has an instantiation cost of 23 (15 + 5 + 3). This example shows

that this heuristic may rapidly lead to increased instantiation costs, especially for more complex

services.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 34 of 71

Copyright © FUSION Consortium, 2014

10. INTRA-DOMAIN ROUTING BASED ON SESSION SLOTS

In this section, we describe the progress of a dynamic instance selection algorithm for a single

resolution domain, which considers both network path cost and instance capacity cost (service

session slots). Upon request arrival, our selection algorithm now aims to minimize the bandwidth

usage by finding the shortest path to a server.

We also start the work on the interaction between the service resolution layer and the orchestration

layer. If network congestion occurs, it is preferable to have the orchestrator redistributing the

current number of running instances rather than scaling up additional instances.

 Problem description 10.1.1

We are looking into a resolution service for a single domain which assigns each request to a network

path and service instance. In the current status, we assume one single service resolver that has

access to monitoring information on any instance running in an execution zone of this domain, as

well as to detailed network path statistics, in particular the current bandwidth usage on links.

When no available path or service instance is found, the service request is rejected by the resolution

service. The main objective of our research is to minimize the amount of rejected requests and serve

as many users as possible.

To ensure that our selection algorithm only selects paths with available bandwidth and service

instances with more than one remaining session slot, we construct a service availability graph upon

request arrival. This graph only contains network edges with sufficient bandwidth for at least one

additional service session. We then consider all service instances which have at least one session slot

available and for which we can find a path to the client in the availability graph. This guarantees that

at least one path with sufficient bandwidth can be found from the client to any of those execution

zones. Using this availability graph we can implement selection algorithms in a simple manner.

Consider a network graph containing edges E, nodes N, services S and service instances M. Client

nodes are denoted �� 	⊂ � and execution zones are modelled as (server) nodes in the graph which

are denoted �� 	⊂ �. The collection �� 	⊂ � contains all service instances of service s ∈ S, which

are running in the execution zones. Gj,s is 1 if server node j is hosting a service instance of service s,

else it is zero. Each edge e ∈ E has a total bandwidth capacity Be and Be,t denotes the available

bandwidth on time t. Each service instance m ∈ M has Pm session slots and can thus serve this many

clients at the same time, while Pm,t denotes the number of available session slots at time t. When a

service request r is served, this incurs a bandwidth consumption Wr on the path between client and

execution zone, and requires one session slot of the selected instance.

Upon request arrival at time t, our selection algorithm must find a network path where all edges

have Be,t ≥ Wr and Pm,t > 0. We aim to minimize the bandwidth usage by searching for the shortest

possible paths.

 Selection algorithms 10.1.2

1. Shortest Path Only: A first approach algorithm constructs a service graph containing all edges of

the original network ignoring the available bandwidth capacity of the network. We then search

for the shortest path between the client and the closest server node with an instance that has at

least one session slot available. If that path does not have sufficient bandwidth available

(considering all other active connections) for the actual bandwidth required for that service

request, the request is rejected. This simple approach does not make use of alternative longer

paths and creates many network bottlenecks which could be avoided by distributing traffic over

several paths.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 35 of 71

Copyright © FUSION Consortium, 2014

Input: Request r for service s from client c.

Output: Network path L from client c to service instance m running on server node j. Or an empty

path if the request is rejected.

Pseudo code:

L ← EMPTY;

minLength ← INFINITY;

For each service instance m in Ms do {

 if (Pm,t > 0) {	

 d(c,j) ← shortest path between client c and server j hosting instance m;

 if (length(d(c,j)) < minLength) {

 L ← d(c,j);

 minLength ← length(d(c,j));

 }

 }

}

For each edge e in d(c,j) do {

 if (Be,t < W)

 return empty path; // reject the request

}

return L;

2. Equal distribution: We try to avoid bottlenecks by equally distributing the load induced on each

edge and service instance. We start with the availability graph containing all edges and service

instances in the network. For each incoming request, we look up the network path and service

instance in the availability graph which induces the least variance in edge and instance load; this

is the most even distribution. Using this equal distribution we aim to delay any bottlenecks until

they can no longer be avoided because all available resources are drained. The disadvantage of

this approach is the higher bandwidth usage due to the use of longer paths when a shorter path

was still available.

This algorithm goes as follows:

Input: Request r for service s from client c.

Output: Network path L from client c to service instance m running on server node j. Or an empty

path if the request must be rejected.

Pseudo code:

L ←	EMPTY;

bestScore ←	INFINITY:

// construct the Service Availability Graph SAGraph

SAGraph ← contains each edge e with Be,t ≥ Wr

Q ← list of all service instances m ∈ Ms with Pm,t > 0 for which we can find a path to client c in

SAGraph

if (Q is EMPTY) {

 return empty path; // no path from client c to instance m available or no service instances with

Pm,t > 0 were found.

}

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 36 of 71

Copyright © FUSION Consortium, 2014

// Consider each service instance as final destination of request r

For each service instance m in Q do {

 serverUsages ← EMPTY;

 For each service instance n in Q do {

 serverUsage ← Pn – Pn,t;

 if (m equals n) {

 serverUsage = serverUsage - 1; // m must also process request r

 }

 serverUsage = serverUsage / Pn;

 serverUsages.add(serverUsage);

 }

 slotVariance = variance(serverUsages); // slot variance if m were to process request r

	

 // now we calculate the network bandwidth variance for k-shortest paths

 K(c,j) ← k-shortest paths between server j (hosting m) and client c in SAGraph

 For each path p of K(c,j) do {

 networkUsages ← EMPTY;

 For each edge e in SAGraph do {

 edgeUsage ← Be – Be,t;

 if (e ∈ p) {

 edgeUsage = edgeUsage – Wr; // e must carry request traffic

 }

 edgeUsage ← Be,t/Be;

 edgeUsages.add(edgeUsage);

 }

 edgeVariance = variance(edgeUsages); // bandwidth variance if request r were to be

forwarded on path p

	 	

 // use slot variance and edge variance to find a weighted total variance

 totalVariance ← α * slotVariance + (1-α) * edgeVariance;

 if (totalVariance < bestScore) {

 bestScore ← totalVariance;

 L ← p;

 }

 }

}

return L;

Shortest Available Path: this algorithm minimizes the bandwidth usage while using the service

availability graph to find alternative network paths and service instances in case of congestion.

Upon request arrival, an availability graph is constructed containing edges with sufficient

bandwidth for that request. Next, we find all service instances with at least one slot available and

for which there is a path to the client in the service availability graph. The request is assigned to

the service instance which is closest to the client in the availability graph. Using this algorithm,

every request is assigned to the closest service instance when no bottlenecks occur. When the

shortest path is congested then the shortest alternative path is used. When the closest instance

has no more session slots available, then the request is assigned to the closest alternative.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 37 of 71

Copyright © FUSION Consortium, 2014

When there are service instances available but there is no path to the client in the availability

graph, then all network resources are in use and we have a network bottleneck. When there are

no service instances available then we have a server bottleneck. In any other scenario the

Shortest Available Path approach will assign the request to the network path and service

instance which minimize the bandwidth usage.

Input: Request r for service s from client c.

Output: Network path L from client c to service instance m running on server node j. Or an empty

path if the request must be rejected.

Pseudo code:

L ←	EMPTY;

minLength ←	INFINITY:

// construct the Service Availability Graph SAGraph

SAGraph ←	contains each edge e with Be,t		≥ Wr

Q ← list of all service instances m ∈ Ms with Pm,t > 0 for which we can find a path to client c in

SAGraph

if (Q is EMPTY) {

 return empty path; // no path from client c to instance m available or no service instances with

Pm,t > 0 were found.

}

// Consider each service instance as final destination of request r

For each service instance m in	Q do	{	

	 // since we only consider instances in Q we already know Pm,t > 0

 d(c,j) ← shortest path between client c and server j hosting instance m in SAGraph;

 if (length(d(c,j)) < minLength) {

 L ← d(c,j);

 minLength ← length(d(c,j));

 }

}

// d(c,j) only contains edges from SAGraph so we already know Be,t	<	Wr	for	each	edge	in	d(c,j)

return L;

The Shortest Available Path selection algorithm assigns requests in an optimal manner as long as the

total demand does not exceed the available resources. When a network or server bottleneck occurs

and all alternatives are in use, selection alone will not suffice to improve the current condition.

Network bottlenecks can be solved by deploying instances on different locations in the network and

server bottlenecks can only be solved by adding additional instances or upscaling the existing

instances. Therefore we developed a dynamic placement algorithm which attempts to reduce the

amount of rejected requests by changing the current instance placement and configuration.

10.2 Interaction between resolution and orchestration layer

When a network bottleneck occurs there are still available service instances to process requests but

these instances are not reachable due to congestion in the network. By placing this instance in a

different location, away from the congested network area, it becomes reachable again and more

requests can be processed. Similarly, when no instances have available session slots we can upscale

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 38 of 71

Copyright © FUSION Consortium, 2014

instances to process more requests or deploy additional instances. This requires an interaction

between the resolution and the orchestration layer. We solve network bottlenecks by finding an

appropriate location to deploy instances and we solve server bottlenecks by upscaling and deploying

additional instances.

This algorithm goes as follows:

Input: The current service deployment configuration, including service instance locations G and

session slot capacities P.

Output: a list V of new deployment configurations, including service instance locations G and session

slot capacities P.

Pseudo-code:

Case: most rejected requests were caused by network blocks

Explanation: we assume that popular service instance(s) or other background traffic are creating

congested hotspots in the network and we mitigate this by deploying instances in other areas in the

network

For each service instance m in M do {

 Popi ← Wr * serviceTime * amountOfRequests;

}

Q ← list of all service instances ordered by decreasing popularity Popi

For the first k service instances m in Q do {

 s ← service of which m is an instance of;

 K ← all server nodes j where Gj,s = 1; // current active servers for service s

 L ← all server nodes j where Gj,s = 0; // current inactive servers for service s

 j ← server in L which is averaged furthest away from all servers ∈ K;

 Gj,s ← 1; // deploy an instance of service s on server j

 V.add({G, P}); // add the deployment configuration G and session slot configuration P to

possible solutions

 y ← least popular service instance of service s based on previously calculated Popi

 Gy,s ← 0; // remove the least popular instance to try and reduce server costs

 V.add({G,P}); // add the deployment configuration G and session slot configuration P to

possible solutions

}

// V now contains 2*k new solutions which should be evaluated

Case 2: most rejected requests were caused by server blocks:

Explanation: we upscale service instances which were unable to process the amount of requests while

downscaling overprovisioned instances to reduce costs

// First, we upscale the under provisioned instances to increase processing capacity

For each service s in S do {

 A ← average amount of rejected requests per second for service s;

 if (A > threshold) {

 m ← service instance of s which received the most requests;

 B ← throughput m; // average amount of requests processed per second by m

 slotsRequired ← A/B;

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 39 of 71

Copyright © FUSION Consortium, 2014

 Pm ← Pm + slotsRequired;

 }

}

V.add({G,P}); // we add the new configuration after upscaling all the under provisioned instances

// Next, we downscale the overprovisioned instances to reduce costs

For each service s in S do {

 A ← average amount of rejected requests per second for service s;

 if (A < threshold) {

 y ← service instance of s which received the least requests;

 usedSlots ← average amount of requests processed per second by m

 Pm ← usedSlots + α; // we only provision as many slots as received on average. α is a

safety margin to avoid under provisioning this instance.

 }

}

V.add({G,P}); // we add the new configuration after downscaling all the overprovisioned instance.

// V now contains 2 new possible configurations

10.3 Evaluation

To evaluate these solutions, we run a simulation for each generated configuration. Each simulation

uses the expected demand pattern as input. At the end of the simulation we are able to measure the

amount of rejected requests as well as the total monetary cost of that deployment setup. We then

use the most cost-effective configuration to configure the network.

 Simulation Platform 10.3.1

Service selection and instance placement algorithms in FUSION must consider network constraints

(edge bandwidth) and server constraints (session slot availability), both of which depend on the

network topology and location of available execution zones. In order to evaluate the proposed

algorithms on multiple network topologies with different characteristics, we developed a simulator

to quickly perform these evaluations. This simulator combines existing frameworks to handle every

aspect of the evaluation, from topology generation to event-driven simulation and presentation of

results. Using algorithm hooks, users are able to run simulations using newly developed algorithms.

We now describe the different aspects of the FUSION simulator.

10.3.1.1 Generating a network topology

Network topologies are generated using Brite [BRITE], a universal topology generator. This aspect of

the generator takes a configuration file as input which describes the generation model to be used

(flat or hierarchical AS/Router topologies) as well as network characteristics (node count, node

connectivity, edge bandwidth, …). The result is a list of network nodes and a description of their

connectivity. Generating two topologies using the same configuration file might result in different

topologies, though, with the same characteristics.

We use four different topology types to evaluate the developed algorithms. These topology

characteristics are described in Table 2. SS50 and SD50 represent two smaller topologies with sparse

and dense connectivity respectively. LS200 and LD200 are two larger equivalents with the same

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 40 of 71

Copyright © FUSION Consortium, 2014

network characteristics. Using these four variations we study the performance of all developed

algorithms under different network conditions.

Table 2 – Network configuration of each topology type used in simulations

 SS50 SD50 LS200 LD200

#service resolvers 50 50 200 200

#clients 5 5 20 20

#servers 3 3 3 3

Average outgoing

edge degree

1 5 1 5

Avg. diameter 12 6 19 8

Brite model Waxman AS Waxman AS Waxman AS Waxman AS

The Brite model used to generate sample topologies is always Waxman AS. To illustrate, Brite uses

the parameters presented in Table 3 to generate sample topologies of LS200 using this Waxman

model. The parameter m represents the average outgoing edge degree from Table 2, while the

amount of service resolvers from Table 2 equals N in Table 3.

Table 3 – Brite parameters to generate sample topologies of LS200

Parameter Value Description

Name 3 #Router Waxman = 1, AS Waxman = 3

N 200 #Number of nodes in graph

HS 100 #Size of main plane (number of squares)

LS 10 #Size of inner planes (number of squares)

NodePlacement 1 Random = 1, Heavy Tailed = 2

GrowthType 1 #Incremental = 1, All = 2

m 1 #Number of neighbouring node each new node connects

to.

alpha 0.15 #Waxman Parameter

beta 0.2 #Waxman Parameter

BWDist 1 #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential

=4

BWMin 10 Minimum edge bandwidth

BWMax 100 Maximum edge bandwidth

10.3.1.2 Constructing a FUSION overlay

The topology generated by Brite has no knowledge of FUSION execution zones or clients. Therefore

we convert the generated topology into a FUSION graph model which supports execution zones,

service resolvers and clients. This graph model requires a user-specified configuration file containing

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 41 of 71

Copyright © FUSION Consortium, 2014

the amount of clients, execution zones, services and how many instances of each service must be

placed.

Initially, all nodes of the Brite network topology are added as service resolution nodes. Next, the

simulator will assign the required amount of execution zones and clients to the network nodes. In

order to increase the importance of the network characteristics we spread out execution zones and

clients as much as possible, creating longer average paths towards the execution zones.

10.3.1.3 Initial service placement

The simulator attempts to place service instances on the assigned execution zones. This is the first

algorithm which a user is able to specify as the initial placement has a big impact on the simulation

results. Currently supported methods include: (1) randomized placement, (2) placing an equal

amount of instances on each execution zone and (3) analysing an event tracelog to determine the

best placement for the first batch of requests, assuming this placement is close to ideal for the entire

tracelog. Next, we use the expected load to assign an initial amount of session slots to each service

instance. The expected load can be derived from a tracelog provided by the user or must be specified

as input parameter in case no tracelog is available.

10.3.1.4 Running a simulation

Once we’ve constructed a topology containing execution zones, clients and services, we prepare a

simulation run. We use CloudSim [CBD11], a framework for modelling and simulating Cloud

Computing infrastructures and services, to perform the event-driven simulations. We extended

CloudSim’s data centre objects with logic required to send, process and forward service requests.

CloudSim also contains a centralized broker object which we extended with the FUSION

orchestration logic. This broker contains knowledge of the network nodes (service location, available

slots, edge capacity, …) as dictated in the graph model.

This modified CloudSim executable requires (amongst others) the location of the tracelog, location of

the file containing the previously constructed graph model, a selection and placement algorithm as

well as the amount of times the placement algorithm must be executed.

The CloudSim broker reads the tracelog provided by the user to schedule each event on the

CloudSim simulation. When the tracelog contains events for more clients or services than the

number specified by the user in the configuration file from step 2, then the broker will aggregate

events in the tracelog. N clients in the tracelog are aggregated into C equally sized groups, where C is

the amount of clients specified in the configuration file. The same logic applies to the services found

in the tracelog. This allows a tracelog to be used as input for simulations with any amount of clients

or services.

10.3.1.5 Sending a service request

Every scheduled event from the tracelog triggers one of the client nodes to send a service request for

the attached service name. This request is forwarded to the broker which executes the service

selection algorithm provided by the user. This algorithm must select an execution zone with one or

more session slots available for that service as well as a path from that client to the selected zone

with enough bandwidth to carry the traffic for that session.

The algorithm returns both the path and destination zone to the broker which then reserves these

network and server resources for that session. The bandwidth on the selected path and session slot

consumed by that session can not be used by consecutive requests until the client or server end the

session. If no path with sufficient bandwidth or server with available slots for that service can be

found, then the algorithm must alert the broker which will reject the request.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 42 of 71

Copyright © FUSION Consortium, 2014

10.3.1.6 Evaluating the service placement

When reading the tracelog to schedule service request events, the broker also calculates the time

interval in between consecutive runs of the placement algorithm specified by the user. After each

interval the broker will schedule a placement evaluation event which pauses the current simulation

and triggers the placement algorithm to run. Any placement algorithm is able to use the broker’s

database of measurements collected during the simulation up until the algorithm is executed. Using

this knowledge, a placement algorithm is expected to generate alternative service placements by

adding, deleting or changing the location of service instances, as well as upscale or downscale the

session slots of any instance. The output is the amount of generated solutions as well as the location

of the files containing the state of each solution.

The simulator will then execute a partial simulation for each solution as starting placement,

processing only requests which occur between the current time and the next scheduled placement

evaluation. At the end of each partial simulation the results are gathered and used to calculate the

profit gained if this placement were to be used until the next placement evaluation. The broker

selects the best solution, makes the required changes to the current graph model to match the new

service placement and continue the main simulation.

10.3.1.7 Gathering results

The simulator gathers statistics about the generated load, resources used, costs made and profit

gained. This is done for each simulation run and multiple runs are combined into averaged statistics.

This allows us to evaluate algorithms on multiple topologies using different configurations to find the

overall best performing algorithm.

 Service selection 10.3.2

The main goal of our algorithm is to minimize the bandwidth usage to reduce required resources and

to maximize the amount of requests per second we can process to increase profit. We evaluate each

selection algorithm by running a simulation on a network with 100 service resolvers, 5 execution

zones, 3 client nodes and 4 services. We deploy 2 instances of each service on execution zones,

which creates a total of 8 service instances in the network.

We use a tracelog of Video-On-Demand traffic patterns, obtained through measurements by Orange

France, to drive the simulation and generate request patterns for the clients. This tracelog contains

data measured over 31 days and includes requests for 5700 objects coming from 9000 different

clients. Figure 11 illustrates the amount of requests generated per hour for exactly two days in the

tracelog.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 43 of 71

Copyright © FUSION Consortium, 2014

Figure 11: CDN requests per hour of two days measured by Orange France

Our generated networks only contain between 5 and 20 clients while the tracelog contains 9000

client records. In order to use this tracelog for any number of clients, we group the total amount of

9000 tracelog clients into X groups, where X denotes the amount of desired clients in simulation. For

SS50 we require only 5 clients so all requests from the first 1800 client records will be seen as

demand of client 1 in simulation, the next 1800 clients represent client 2, etc. We use the same logic

to group the 5700 trace objects into the desired amount of simulation services.

The result of this simulation includes the amount of rejected requests as well as the bottleneck which

caused a request to be rejected. We wish to minimize both the amount of rejected requests and the

bandwidth usage.

Table 4 shows the performance of each algorithm. Using the Shortest Path Only algorithm we

process the least requests, as expected, due to alternative network paths to servers not being used.

The large amount of rejected requests renders this algorithm less suitable for practical use. The other

two approaches perform almost equally well. Closest Available finds the shortest path with sufficient

bandwidth available towards a service instance with available session slots. The Equal Distribution

does also finds paths with sufficient bandwidth but does not prioritize the shortest path. Instead, it

aims to have equal load on each path and service instance until all resources are full. Although both

approaches allow an almost equal amount of requests to be processed, the Closest Available

approach requires less bandwidth usage as it prioritizes shortest paths first.

0

100

200

300

400

500

600

700

0 4 8 12 16 20 24 28 32 36 40 44 48

R
e

q
u

e
st

s

Hour

First 48 hours

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 44 of 71

Copyright © FUSION Consortium, 2014

Table 4: service selection results for all three selection algorithms

Shortest Path Only Rejected due to bottleneck in:

 Network Server Processed requests Bandwidth used

 43458 20913 43841 1157875

Closest Available Rejected due to bottleneck in:

 Network Server Processed requests Bandwidth used

 25061 26198 57066 2934105

Equal distribution Rejected due to bottleneck in:

 Alpha α

(used in variance)

 Network Server Processed requests Bandwidth used

 0.0 24259 27081 56927 3154347

 0.5 24551 26861 56849 3192334

 1.0 25093 26251 56949 3039816

 Service placement 10.3.3

The service placement algorithm in the orchestration layer comes into play when the available

resources are insufficient to handle the current load, for example when too many requests are being

rejected due to bottlenecks. A service placement algorithm aims to maximize the amount of

requested requests by changing the service placement and server resources. If this was our only

concern, we could deploy a service instance on each available execution point and configure each

instance to have infinite session slots. While upscaling resources or deploying additional instances

might increase the amount of processed requests, it also comes with a monetary cost. A trade-off

must be found between the cost of deployed services and the profit made from processing requests.

For these reasons we developed a cost model which accounts for the following costs:

• Cost per Gbps: how much must the network provider pay for each Gb consumed on the

network per second?

• Provisioning cost: the price per second to provision a service instance on an execution point.

This does not include session slot costs yet and the instance can not process requests

without slots.

• Cost per session slot: the price for the resources assigned to a service instance to process

one request connection.

• Profit per request: the money received for each processed request.

By deploying more resources we can increase the amount of processed requests but this also induces

more resource costs. It is up to the service placement algorithm to consider both profit and costs to

find an optimal deployment. The solution which generates the most profit after deducting all costs is

the best option and will be used to reconfigure the service deployment.

Analysing the performance of our first approach algorithms is a difficult challenge as we generate a

set of new deployment configurations and use an experimental simulation to try and evaluate the

quality of these solutions. Further study is required to identify the problem in the current

deployment solution and find the best solution which optimizes profits.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 45 of 71

Copyright © FUSION Consortium, 2014

The reaction time of the service placement algorithm can significantly improve the profit made; the

faster we remove bottlenecks in the network, the less requests will be rejected because of it.

However, reconfiguring the service placement more frequently reduces the amount of information

gathered on the quality of the active placement. This can lead to poor placement decisions and

induce higher costs.

Table 5: service placement performance in function of frequency

Rejected due to bottleneck in:

 Evaluations during sim. Network Server Accepted Bandwidth Profit (€)

0.0 16942 29464 62623 3615191 9074

1.0 17959 25256 66220 3714794 9693

2.0 17548 22534 69390 3729564 10341

3.0 17468 20948 71373 3685925 10797

4.0 18243 19868 71695 3762294 10808

5.0 18261 20777 70822 3642196 10787

6.0 17058 19474 73271 3783065 11146

Table 5 contains simulation results in function of the service placement frequency. The more

frequent we reconfigure the service placement the faster a bottleneck can be removed but also the

less information our algorithm has to base its decisions on. We observe that the amount of accepted

requests increases as we reconfigure more frequent, although the performance improvement is less

than linear. The more frequent we reconfigure our deployment, the less profit we gain from this, up

to the point where we barely notice any difference when reconfiguring between three or five times

during simulation.

Although these first results still require further study, we can already see that there is room to

improve for the service placement algorithm.

10.4 Future work

Our current placement approach evaluates placement configurations by running simulations. This is

a time-consuming process which means the reaction time of the placement algorithm is limited. On

top of that, there is no guarantee that the generated configurations contain a solution for the

problem which caused the bottleneck.

In future work we will develop a method to accurately detect the cause of network or server

bottlenecks. We then create a model to find and generate solutions to solve that problem. We will

also evaluate new algorithms which combine both upscaling/downscaling and adding/removing

instances, so that one solution can mitigate both server and network bottlenecks.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 46 of 71

Copyright © FUSION Consortium, 2014

11. DYNAMIC INTER-DOMAIN RESOLUTION

In this section, we first present a general mathematical model for the dynamic server selection

problem. Then we show how to use this model in a practical application - the Source-to-Screen (S2S),

a real-world cloud-based video processing service, according to the FUSION architecture.

In general, the goal of the server selection is to direct user requests to suitable execution zones (EZs).

In this work, we define a utility function corresponding to user satisfaction. In detail, we use latency

between a user and an EZ as a metric to measure that user satisfaction. We focus on a multi-

objective optimization problem in which we first guarantee max-min fairness between users and

then maximize the total utility of all users. We also consider a trade-off between the data transit cost

(between resolution domains) and the performance (total utility) of users. We model the problem as

a linear programming formulation.

11.1 Problem description and mathematical model

 Problem description 11.1.1

• Inputs: estimated user requests, network performance model (e.g. latency, link bandwidth), data

transit costs and resource constraints (e.g. number of available session slots at each EZ).

• Assumption: we use a centralized model in which each service resolver (SR) has all input

information. Time is divided into fix-length windows, and the SR runs the optimization

formulation at the beginning of each window time. Based on the results, we know how to map

user requests to EZs.

• Objective: maximize the performance (total utility) of users while achieving max-min fairness

between users. The objective also considers the trade-off between the performance and the

data transit cost.

 Utility function 11.1.2

Figure 12: Utility function vs. response time

R
min

 r R
med

 R
max

0

u

1/k

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 47 of 71

Copyright © FUSION Consortium, 2014

Figure 13: Utility function with different "k"

As shown in Figure 12, the utility function should express the following meanings:

• If �	 !"#$, users are very happy. Depending on service type, we can choose an appropriate

value of !"#$. For some services, even if reducing more the response time cannot improve QoE,

therefore the utility keeps the same value if �	 !"#$. For example, voice over IP requires

!"#$ % 20	() [Wiki]). However, for other services like Web, the shorter the response time is,

the better QoE the users get, so in this case we can set !"#$ = 0.

• If !"#$ < �	 	!"*+: the utility value is positive, meaning that the users are quite happy.

However, the user satisfaction is reducing when the response time is increasing. We call !"*+ as

the expected response time.

• If !"*+ < �	 	!",-: the utility value is negative but the QoE is still in an acceptable range.

• If !",- < �: the utility value is .∞ meaning that we consider the service request is blocked.

To satisfy the above requirements, we can define a utility function as follows (similar to but more

complicated than the one in [NOMS08]):

 0(1) % 	
234

52
 (1)

where:

! %	!"*+ . !"#$ and

 (2)

A constant 6	 7 	1 is used to indicate the importance level of the user request. Large value of k

means that the request is less important. By changing the values of k, Rmin, Rmed and Rmax, we can

control the shape of the utility function (Figure 13).

 Optimization Formulation: Linear Program (LP) 11.1.3

The objective of the optimization formulation is to achieve max-min fairness between users while

maximizing the total utility. The objective also considers the trade-off between the performance and

the service deployment cost. The algorithm works in two steps:

• Step 1: the objective function is to maximize the minimum user utility. In this step, we guarantee

that the solution achieves max-min fairness between all users.

• Step 2: after the first step, let the value of the objective be Umax-min. Then, in the second step, we

add the following constraint to the formulation:

R
min

 rR
med

R
max

0

u

k = 1

k = 2

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 48 of 71

Copyright © FUSION Consortium, 2014

min (u) >= Umax-min

By adding this constraint, the second step guarantees that the solution we find will be at least as

fairness as in the first step. In addition, with the new objective: (9:	[< ∑0 . (1 . <)>?)@], the

solution maximizes the total utility while considering a trade-off with the deployment cost (< is a

parameter to say the relationship between the total utility and the deployment cost in the

optimization objective).

Inputs:

• Estimated user requests: BCD: User “i” requests “d” session slots from service “j”.

• ECD: link bandwidth required by user “i” to get service “j”.

• GCH: latency (response time) between user “i” and execution zone (EZ) “t”.

• IH
D
: available capacity (session slots) of service “j” at EZ “t”.

• JKILMHNH: unit bandwidth cost between user “i” at EZ “t”.

• OPCQ
CD
, OPRB
CD

, OPST
CD

: three response time thresholds defined in Figure 12.

• OCD %	OPRB
CD

. OPCQ
CD

Main variable: TCH
D
∈ [U, V] - fraction of user “i” connects to EZ “t” to get service “j”. We assume that

user “i” is a set of individual users that are grouped by near geography location.

LP formulation of Step 1:

W",-3"#$ % (9:	W (3)

s.t.

∑ :#X
Y

X∈�Z % 1		∀(\,]) ∈ ^ (4)

∑ _#Y:#X
Y
 X̀

Y
		∀]	 ∈)a�b\>a, @ ∈ cd#∈ef*g (5)

�#Y %	∑ h#X:#X
Y

X∈�Z 		∀(\,]) ∈ ^ (6)

1#Y 7 0	∀(\,]) ∈ ^ (7)

1#Y 7 �#Y . !"#$
#Y
	∀(\,]) ∈ ^ (8)

0#Y %
2ij34ij

5ij2
ij
	∀(\,]) ∈ ^ (9)

W 0#Y	∀(\,]) ∈ ^ (10)

>?)@Xg,$f#X % ∑ ∑ kl`?)@#X#Y∈mX∈�Z n#Y:#X
Y

 (11)

>?)@Xg,$f#X `opq (12)

:#X
Y
∈ [0,1]	∀(\,]) ∈ ^, @ ∈ cd (13)

Explanation:

• Objective function (3): guarantee max-min fairness where U = min(utility) (as constraint

(10)).

• Constraint (4): all the requests of a user “i” for a specific service “j” have been served.

• Constraint (5): each EZ has a limited number of available session slots dedicated for a service

type. This may happen that some special services (e.g. need GPU processing) can only be

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 49 of 71

Copyright © FUSION Consortium, 2014

deployed at some specific EZs. This constraint is used to make sure the number of available

session slots of EZ is enough to serve user requests.

• Constraints (6) are used to computed the average latency for the user “i” to get the service

“j”. Assume that the connection between users and EZs are a full mesh, it means that each

user can connect to any EZs. For the inputs of the formulation, we simply remove all pairs of

(user, EZ) that have latency which is larger than !",-
#Y

. This step guarantees that the latency

for any user “i” to connect to any EZ “t” to get service “j” has to be less than !",-
#Y

.

• Constraints (7) – (8) ensure that 1#Y 7 0	\r	�#Y !"#$
#Y

, otherwise 1#Y 7 � . !"#$
#Y

.

• Constraint (9) is used to model the utility function (1). Note that when �#Y !"#$
#Y

, z can be at

any value that is greater or equal to 0. However, thanks for the objective function, we would

like to maximize the utility (9). It means that the formulation will choose a minimum value of

z, or in other word, z is set to 0. Similarly, the formulation will choose 1#Y % �#Y . !"#$
#Y

 when

�#Y 7 !"#$
#Y

. Moreover, as mentioned in the constraints (6), a feasible solution does not allow

any response time that is larger than !",-
#Y

. In other word, we can say that when �#Y > !",-
#Y

,

the utility function is –infinity. In summary, the constraints (6) – (9) model exactly the utility

function as defined in (1) (or in Figure 12). In the formulation, a user is group of individual

users. For simplicity, we consider all group users are the same. If users are with different

group sizes, we can multiply the right hand size of (9) with a parameter corresponding to the

size of the group user “i”. This helps to distinguish the group of users with different number

of individual users.

• As shown in Figure 13, in the negative region, with the same value of response time rij, the

request with low “k” gives lower utility (we call it a bad request). As the objective function is

to maximize the utility of the bad request, the formulation will try to increase the bad

request’s utility by setting small value of rij for it. This intuitively means that the request with

low “k” is more important.

• Depending on the users and the service type, we can set the appropriate values of the

important level “k”. Then, by playing with “k”, Rmin, Rmed and Rmax, we can control the shape

of the utility function (Figure 13).

• Constraint (11) and (12) limit the transit cost between service routing domains. As shown in

[ZZG+10, XL13], the linear transit cost that we use in constraint (11) is a good approximation

for the 95-th percentile transit cost.

LP formulation of Step 2:

(9:[<(∑ 0#Y)#Y∈m . (1 . <)`opq] (14)

s.t.

(4) – (13)

W 7 W",-3"#$ (15)

Explanation:

In this step, we add the constraint (15), where U is the minimum utility of users and Umax-min is the

objective value from step 1, to ensure that the solution should be at least as fairness as the max-min

fairness in step 1. We keep the same constraints (4) – (13) and change the objective function as (14)

where <	is a parameter to say the relation between the total utility and the cost. If we set < % 1, we

get the solution with maximal total utility (while the cost is only restricted by the constraints (12)).

On the other hand, if < % 0 the solution we get achieve max-min fairness while minimizing the total

transit cost.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 50 of 71

Copyright © FUSION Consortium, 2014

There is always a trade-off between the utility and the cost. In case the service provider know how to

choose the value of <, they simply run the formulation as step 2 above and get the optimal solution.

However, if it is hard to estimate <,	we have another way to give hint for the service provider to find

a suitable solution. In general, given a solution, we can plot its cost and utility on a 2-D plane (Figure

14).

Figure 14: Trade-off between utility and cost.

By setting < % 1 and < % 0, we can find two solutions called maxutility and mincost, respectively. From

maxutility, we can get the corresponding cost called maxcost. Then, we set many STEP_COST points in

between the range [mincost, maxcost]. Next step, in constraint (12), we set the value of COST to be

equal to each STEP_COST point. We set < % 1 and find the corresponding total utility for each value

of the STEP_COST point. Depending on the granularity of the graph and how much time we can pay

for computation, we can choose a suitable number of STEP_COST points. Finally, we get a trade-off

relationship of the cost and the utility as in Figure 14. Based on this figure, the service provider can

easily choose a solution with their desired trade-off.

It is noted that the optimization formulation above is a linear programming model; hence it can be

solved efficiently. The number of variables :#X
Y

 in the LP problem is |t| 	v 	 |q| 	v 	 |w| where |t| is the

number of users, |q| is the number of EZs and |w| is the number of service types. Since |q| and |w|

are usually much smaller than |t|, the worst case complexity of the LP problem will be o(|t|x.z)

[LPWIKI].

Relationship between server placement (WP3) and server selection (WP4) algorithms:

The objective of the service placement is to find which service instances to be deployed in which EZs.

Given this deployment, we know the actual session slots at each EZ. The server selection phase is

based on these real resource constraints to allocate user requests to appropriate EZs. In general, the

formulations that we used in the service placement and the service selection are quite similar. We

list in below the commons and the differences between them.

Similarities between service placement and service selection:

• They share the same idea of utility function.

• The algorithm works in two steps to achieve max-min fairness between users while maximizing

the total utility. The algorithm also considers the trade-off between the performance and the

cost.

• The constraints in the optimization formulation are similar, except the ones relating to the cost

(constraints (11-12)).

Differences between service placement and service selection:

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 51 of 71

Copyright © FUSION Consortium, 2014

• The service placement considers the deployment cost of service instances in EZs while the

service selection cares about the data transit cost between multi-domains.

• The capacity constraints (5) in service deployment are about the capacity of the hardware

resource at EZ. In service selection, these are the constraints on the available session slots of

service instances in EZs. In general, the capacity of the service selection is less or equal to the one

of the service deployment.

The service placement is executed less frequently than service selection. In the service placement,

we assume that a user can connect to any EZs. However, in the service selection, to reduce the input

size for the optimization, we can assume that each user can only connect to a subset of EZs.

 Preliminary results of the LP model 11.1.4

We present in this section some preliminary simulation results of the LP model for the service

selection. We use the input dataset of the Massive Open Online Course application. In general, the

dataset includes 2508 data centres distributed in 656 cities on over the world. To map them into the

FUSION architecture, we call each city as an execution zone. The user demand is modelled as Poisson

process and is proportional to the population of the cities. We manually set the number of total

available session slots so that they are enough to serve all user demands. The latency between users

and execution zones are collected based on the Haversine distance, the shortest distance between

two points around the planet’s surface. We define the three latency thresholds Rmin = 20 ms, Rmed =

50 ms and Rmax = 150 ms. All of these data and the cost can be collected from

https://github.com/richardclegg/multiuservideostream.

11.1.4.1 Trade-off between the total utility and the transit cost

In step 2 of the algorithm, assuming that we do not know value of <, then we draw a graph to show

the trade-off between the total utility of all users and the transit cost, which is explained in Figure 15.

Figure 15: Trade-off between utility and cost

The utility is computed in percentage in which 100% means all users can get their best QoE (latency

is less than Rmin). As shown in Figure 15, the best utility we can achieve is 96%, which means that

approximately 96% of the users can have latency which is less or equal to Rmin = 20 ms. From the

Figure 15, with the budget (cost) of 420 (units), we can get the maximum utility. On the other hand,

with a limited budget of 180 (units), 84% of users can get their best QoE. Using this graph, the service

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 52 of 71

Copyright © FUSION Consortium, 2014

provider can see the trade-off between the user utility and the cost and then they can choose the

best operational point.

11.1.4.2 The benefit of max-min fairness

Figure 16: Latency of the worst user with and without max-min fairness

Figure 17: Total utility with and without max-min fairness

Figure 16 shows the comparison between the case if we consider max-min fairness (step 1 of the

algorithm) and the case we simply maximize the total utility (ignore step 1 in the algorithm). The x-

axis is the interval of cost ranging from the maximum and the minimum cost, which correspond to

each step in Figure 15. As shown in Figure 16, with the max-min fairness constraint, the worst user

still can get a good QoE (latency is less than 25 ms) while without max-min fairness, some users

suffer from high latency (but it is always less than Rmax). However, with max-min fairness, it can lose

some benefits on the total utility and the cost. Figure 17 shows the comparison between the total

utility with and without max-min fairness. The solution without max-min fairness can provide the

best QoE for 98% of users, while it is 96% with the case of max-min fairness. On the other hand, with

the minimum costs of 151 (units) and 40 (units), the total utility can be achieved are 83% and 94%

with and without max-min fairness, respectively. Based on these simulations, we can see the

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 53 of 71

Copyright © FUSION Consortium, 2014

advantages of max-min fairness in guaranteeing good QoE for all users with a small penalty

compared to the case without max-min fairness.

11.2 Server selection within Source-to-Screen (S2S) application

 Source-to-Screen application 11.2.1

To evaluate FUSION with a practical application we adapted Source-to-Screen (S2S), a real-world

cloud-based video processing service, according to the FUSION architecture. S2S is provided by the

British Association of Films and Television Arts (BAFTA) as a subscription-based service to film

producers around the word who want to transcode their video files in formats compatible for video

streaming. A typical service transaction involves three steps:

• The upload of a video file from a user to the S2S servers

• The processing of the input video file to produce a transcoded version of it.

• The download of the transcoded video file back to the user.

The uploading and downloading time depends on the size of the video files. Figure 18 shows the

distribution of files sizes for the uploaded videos. The average file size has been 4.2 GB and the

median 1.9GB.

Figure 18: CDF of video file sizes uploaded to S2S

The processing time depends on the frame rate and the duration of the video files. Figure 19 shows

the distribution of total processing time.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 54 of 71

Copyright © FUSION Consortium, 2014

Figure 19: CDF of the video processing time

Figure 20 shows the user distribution. In 2014 S2S received 23,943 transcoding requests from 1,700

different users across 48 different countries. About 50% of the users reside in the UK and in the US.

Figure 20: User distribution

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 55 of 71

Copyright © FUSION Consortium, 2014

 Implementation of S2S within FUSION architecture 11.2.2

We implemented S2S on top of Amazon Web Services (AWS) cloud computing infrastructure, which

provides the necessary components to capture the requirements of the FUSION service routing

architecture. Figure 21 shows a high-level representation of the FUSION architecture.

Figure 21: High-level mapping of S2S to FUSION architecture

Each execution zone is a collection of physical computational resources in a specific location, such as

a data centre. Each execution zone hosts a number of service instances that can handle a number of

requests in parallel, depending on the allocated resources. The number of possible parallel requests

corresponds to a number of session slots that are available.

The service resolutions are responsible for routing client requests to the appropriate execution

zones that can serve the request more efficiently. Service resolutions need to maintain information

on the available session slots in each execution zone and monitor the network conditions between

the clients and the execution zones.

To implement the FUSION’s service routing we use the following AWS components:

• Elastic Computing Cloud (EC2) offers the ability to lunch virtual servers at different geographical

locations called EC2 regions. Therefore EC2 region is a concept similar to FUSION execution

zones. Currently there are 9 different EC2 regions shown in Table 6 EC2 regions. Each EC2

instance within a region corresponds to a service instance in FUSION. Each region has a limit of

maximum number of EC2 instances that can be launched. The cost of each EC2 instance differs

by region.

Service

resolution

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 56 of 71

Copyright © FUSION Consortium, 2014

Table 6 EC2 regions

ap-northeast-1 Asia Pacific (Tokyo)

ap-southeast-1 Asia Pacific (Singapore)

ap-southeast-2 Asia Pacific (Sydney)

eu-central-1 EU (Frankfurt)

eu-west-1 EU (Ireland)

sa-east-1 South America (Sao Paulo)

us-east-1 US East (N. Virginia)

us-west-1 US West (N. California)

us-west-2 US West (Oregon)

• Cloudwatch is a monitoring service for EC2 instances that allows monitoring metrics such as CPU

utilisation, data transfers and disk usage. Cloudwatch is used by our service resolution

implementation to calculate the available session slots at each execution zone.

• Route 53 is a DNS service that allows implementing different types of routing including latency-

based routing, and geo-DNS. We use Route 53 to route the initial client requests to the closest

service resolution.

To implement the network monitoring required by service resolutions we use RIPE Atlas, a global

network of probes that measure Internet connectivity and latency. Figure 22 shows the coverage of

RIPE Atlas. We can see that Atlas provides a particularly good coverage for the countries where the

majority of the S2S reside. We collect periodically measurements from Atlas probes within ISPs from

where requests are received and we store the results in a MySQL database. The database is

accessible by all the service resolutions and they use it to pull data on network latency between a

client and each EC2 region.

Figure 22: Coverage of RIPE Atlas vantage points

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 57 of 71

Copyright © FUSION Consortium, 2014

In AWS there is no concept similar to service resolution. To implement service resolution, we allocate

an EC2 service instance at each AWS region to have the role of the service resolution. Initially a client

RESOLVE request is routed to service resolution at the geographically closest region. Each service

resolution receives from cloudwatch data on the available service slots of its own region and

exchanges this information with the servicer resolutions at the other regions.

Figure 23 shows the overall implementation architecture.

Figure 23: Implementation architecture based on AWS.

 Impact of service resolution policies on performance and cost of S2S 11.2.3

Figure 24 shows the results, in terms of overall latency and cost (processing cost on Amazon AWS), of

selecting servers based on lowest cost, lowest network latency and randomly. Overall service latency,

in these plots, has been calculated as the time from when a user submits a video file for transcoding

to when the results are delivered back over the network. As the S2S service, as currently

implemented, transcodes an entire file before delivering the result to the user an approximation has

been made for a real-time transcoding service. The minimum number of frames that can be

transcoded at once has been determined, depending on the type of video encoding. The total

number of frames in the submitted video has been divided by this minimum to determine the

number of chunks in the submitted video that could be processed in a real-time fashion. The total file

upload time, total transcoding time and total file download time has been divided by the number of

chunks to calculate the service latency plotted in the graph.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 58 of 71

Copyright © FUSION Consortium, 2014

Figure 24: Impact of service resolution policies on S2S performance and cost

The graph demonstrates that service resolution policy affects both cost and performance of the S2S

service. Selecting on lowest cost reduces mean costs but at the expense of service latency and vice

versa. The next step is to evaluate the performance of the optimised service resolution policy using

the optimisation formulation as presented earlier in this section.

We have implemented the server selection optimization model using CPLEX solver at each service

resolution. The inputs for the optimization are collected by AWS components. For instance, the

number of available session slots is collected from the Cloudwatch, the network metrics are from the

network monitoring (RIPE Atlas). In addition, we have costs of data transit from different EZs based

on different EC2 regions. After finding solutions, the server selection model stores the results in a

forwarding table, which is used by the service resolution to direct client requests to appropriate EZs.

Evaluation results comparing optimised service resolution based on a combination of service and

network metrics with the single metric resolution policies (Figure 24) are currently being collected.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 59 of 71

Copyright © FUSION Consortium, 2014

12. SERVICE RESOLUTION PROTOTYPE

12.1 Emulation platform

To evaluate the different service resolution algorithms, we are building an emulation platform on the

Fed4FIRE infrastructure [F4F]. The final plan is to showcase a running prototype of multiple service

resolution domains, with execution zones running on geographically distributed locations. The

operational details of the emulation platform are explained in WP5. The table below lists the current

status of different steps that must be taken towards this WP4 prototype.

Action Comment Status

Topology Network topology Available:

• BRITE generator

• CAIDA database

Planned for 2015:

• Ongoing discussions at Orange Poland to

expose network topology details to the

consortium

Service demand Popularity of services over

time (e.g. diurnal patterns,

longer-time trends) and

place.

Available:

• Poisson distribution

• CDN trace from Orange France

Planned for 2015:

• Ongoing discussions at Orange Poland to

expose demand patterns.

Service Placement Placement of services in

distributed locations,

connected by network.

Available:

• Virtual Wall with network emulation

Planned for 2015:

• Deployment on PlanetLab and/or

geographically distributed experimental

facilities; using the Fed4Fire framework

Request and

resolution

protocols

Message type and syntax Available:

• first version of interface specification
• first version of message syntax
• support for atomic services

Planned for 2015:

• incremental updates and refinements

• support for composite services

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 60 of 71

Copyright © FUSION Consortium, 2014

12.2 Zone gateway

The zone gateway is responsible for the advertisement of service availability to the service resolvers.

 OpenStack extension for VMs 12.2.1

At this moment in the project, there is a first prototype available. This prototype has been integrated

in OpenStack IceHouse. In the current implementation, the sum of all available session slots of

running instances, plus the number of session slots that could be offered in addition by deploying the

maximum number of instances allowed.

This implementation allowed us to functionally evaluate the service resolver. The tight integration

with OpenStack, because of the use of its Ceilometer monitoring framework, is however a drawback.

Moreover, container support (especially Docker) is not available in the mainline software tree

OpenStack and is not to be expected before the Kilo release in mid-2015.

For this reason, it was decided to start from scratch with a new implementation of the zone gateway,

that is independent from OpenStack.

 DCA-compatible version 12.2.2

As explained in D3.2, the Data Centre Abstraction (DCA) layer is an adaptor layer between the high-

level FUSION zone manager and gateway; and the underlying DC and its corresponding DC

management and orchestration (MANO) layer.

At the time of writing, we are still in the functional analysis phase. Design requirements identified so

far are:

• operating on Docker containers

• support for zone-internal service discovery, preferably building on existing tools like

Consul.io or Apache Mesos. This will probably need an extension of the current DCA layer

• interfacing with zone manager for composite service resolution support, especially the

aggregation of session slots of individual instances that belong to multiple composite

services

• support for zone-internal composite service resolution, using the ambassador pattern (as

discussed in section 9).

• integration with load-balancers like HAProxy. This is challenging in the context of composite

services, where the resource session slots of an individual instance must be mapped to

session slots of multiple composite services.

12.3 Service resolver

The currently available prototype is built in Java, to allow for function evaluation. Over the next year,

we plan the investigation of the scalability of this prototype for the size of the intended emulation

set-up on PlanetLab, possibly moving to other server technologies if needed (e.g. node.js).

12.4 Prototype Evaluation

We have deployed an initial version of a service resolver, operating in a single domain and with a

shortest available instance heuristic. In this first version, the service resolver has a full and up-to-date

view on the network topology, the network load and the service instance load. This is realized using

the discrete event-based simulation framework MASON. Each time a request arrives, an internal

state manager adjusts the state accordingly (e.g. decreases the available number of session slots).

The prototype algorithm has been evaluated starting from the router-level topology that is

continuously collected and updated by CAIDA [CAIDA]. We reduced this dataset to the nodes that are

geolocated in France. IP-routers having the same geographical coordinates where aggregated and

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 61 of 71

Copyright © FUSION Consortium, 2014

only links between the reduced subset were maintained. Finally, the link cost was set to the

geographic distance between the routers. The resulting topology comprised 77 nodes and 98 edges.

Subsequently, we have randomly divided the nodes in 16 client nodes and 61 server nodes

(execution zones). Service requests are generated from these client nodes following a Poisson

distribution (mean λ) with exponentially distributed request interarrival times. Each client node thus

contributes equally to the demand load, which we advocate by the fact that we simulate the network

of one country where people are likely to have the same cultural preferences and diurnal patterns.

For each service a number of replica instances is deployed on randomly selected execution zones.

Each request is assigned to a particular instance by a centralized service resolver, who selects the

closest available instance. The session length was set identical for each service.

Simulations were carried out on the Virtual Wall emulation environment of iMinds [VWALL].

 Average network cost 12.4.1

We first evaluated the impact of increasing demand for a single atomic service. The network cost is

calculated as the cost of the link between the client node and the selected instance. Each service was

deployed randomly on different execution zones, with a varying number of session slots. The service

connection time was fixed to 10.

Figure 25: When each execution zone where the service is deployed announces more requests, the

average network cost of connections between clients and servers decreases.

Figure 25 illustrates the trade-off between network cost and deployment cost. When each execution

zone can handle only a limited number of parallel connections, the network cost increases with the

demand because client requests are resolved to instances in more distant execution zones. When

each execution zones announces abundant session slots, each request can be handled by an instance

in the closest execution zone even in high demand scenarios.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 62 of 71

Copyright © FUSION Consortium, 2014

In the evaluated configurations, there were only rejected requests in the scenario with the highest

demand and the lowest capacity (λ = 0.5, 10 slots per instance). When the load increases, the

network cost will saturate to a level where each instance is continuously occupied.

 Average cost per client node 12.4.2

Figure 26 depicts the average network cost of requests per client node. The network cost from each

client nodes increases with the demand, but the relative cost increase between the high-demand

scenario (λ = 0.5) and low-demand scenario (λ = 0.033) varies greatly from 21 % (node 453) to 216 %

(node 265). With other service placement algorithms, this difference might be smaller.

Figure 26: Each execution zone provides 10 session slots.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 63 of 71

Copyright © FUSION Consortium, 2014

13. CONCLUSION

This deliverable presents the status of the design and implementation of the service resolution layer

in the FUSION framework. This layer is conceived as an overlay for the IP stratum and provides name-

based selection of instances; based on network metrics and service instance availability.

In this second year, we have progressed on the definition of a multi-domain organisation of the

service resolution layer. We have identified the different policies that naturally arise in a setting with

different stakeholders. From this study, we have defined all interfaces of the service resolution layer.

The functionality is been translated into a comprehensive new protocol: the Networked Services and

Resolution Protocol. This protocol is not only used for service requests; but also contains messages

for exchange of resolution information and organisation of the resolution overlay.

An initial prototype implementation is available for a single domain, and the design of resolution

algorithms has started.

For year 3 of the project, we have identified the following topics:

• The different roles in resolution policy enforcement and their potential impact on service

resolution mechanisms and the overall FUSION architecture.

• The main research idea that will be followed here is to put limits on the distance (in terms of

network hops and/or service routing domains) on the forwarding of service availability

updates.

• Scalable mechanisms and algorithms for creating the intra-domain topology of service

resolvers. Especially, we will consider whether there should be a (logical) full mesh between

the different domains, or a spanning tree must be established. The trade-off between

overhead and efficiency will be evaluated for different aggregation mechanisms of

information on service availability and load.

• Service resolution algorithms that efficiently load-balance between execution zones based

on a forecasting of the session slots and histogram of session length. The algorithms should

be able to run in a distributed (inter-domain) environment. Heuristics will be developed that

trade off network performance with session slot availability.

• Expanding the service resolution layer functionality through interaction with the

orchestrator. This involves case where services want to do their own resolution , as well as

composite services with dynamic service graphs. The main research challenge is to identify

how much structural information can be embedded in the resolution layer without

introducing complexity that would harm the scalability or performance of this layer.

• Develop a large-scale prototype of a multi-domain service resolution layer. Two set-ups are

targeted: one with emulated network topology on the iMinds Virtual Wall, and one that runs

on the actual Internet (PlanetLab).

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 64 of 71

Copyright © FUSION Consortium, 2014

14. REFERENCES

[APYA14] R. Alimi, R. Penno, and Y. Yang, “ALTO Protocol,” IETF Draft, draftietf-alto-protocol-27, March

2014.

[BRITE] Medina, A., Lakhina, A., Matta, I., & Byers, J. (2001). BRITE: An approach to universal topology

generation. In Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

2001. Proceedings. Ninth International Symposium on (pp. 346-353). IEEE.

[CAIDA] http://www.caida.org/data/internet-topology-data-kit/

[CBD11] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a toolkit

for modelling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Software: Practice and Experience, 41(1), 23-50.

[CISCO-IOX] Cisco Fog Computing with IOx,

http://www.cisco.com/web/solutions/trends/iot/cisco-fog-computing-with-iox.pdf

[F4F] Fed4Fire website. http://www.fed4fire.eu

[FPLS13] Frank, B., Poese, I., Lin, Y., Smaragdakis, G., Feldmann, A., Maggs, B., Rake, J., Uhlig, S., & Weber,

R. Pushing CDN-ISP Collaboration to the Limit. SIGCOMM Computer Communications Review.

43(3), 34-44, 2013.

[HTTP2] Why is HTTP2 binary? http://http2.github.io/faq/#why-is-http2-binary

[LPWIKI] Linear Programming. http://en.wikipedia.org/wiki/Linear_programming

[NDGK12] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko, J. Rexford, and M. J. Freedman.

Serval: An End-Host Stack for Service-Centric Networking. In Proc. 9th Symposium on Networked

Systems Design and Implementation (NSDI’12), San Jose, CA, April 2012.

[NGSO11] NGSON (Next Generation Service Oriented Network) – IEEE 1903, “Standard for the Functional

Architecture of Next Generation Service Overlay Networks”, 2011.

[NOKIA-LA] Nokia Siemens Networks – Liquid Applications. http://networks.nokia.com/portfolio/liquid-

net/intelligent-broadband-management/liquid-applications

[NOMS08] D. Carrera, M. Steinder, and J. Torres, “Utility-based Placement of Dynamic Web Applications

with Fairness Goals”, in NOMS 2008.

[MASON] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. “MASON: A Multi-

Agent Simulation Environment”. In Simulation: Transactions of the society for Modeling and

Simulation International. 82(7):517-527.

[PDBR14] L. Peterson, B. Davie, R. van Brandenburg. Framework for Content Distribution Network

Interconnection (CDNI), IETF RFC 7336, 2014.

[PLA11] D. Lagutin, “Security: Packet Level Authentication and Pub/Sub Security Solution.”

 http://wiki.fp7-pursuit.eu/uploads/d/db/PURSUIT_Aalto_Course-Lecture_8-Security_2-

4.10.2011.pdf

[RTCP] RTP: A Transport Protocol for Real-Time Applications. RFC 3550.

[SAIL13] D.B.3 – Final NetInf Architecture http://www.sail-project.eu

[SOFTLAYER] SoftLayer. http://www.softlayer.com/

[VanJacobson] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R. L. (2009,

December). Networking named content. In Proceedings of the 5th international conference on

Emerging networking experiments and technologies (pp. 1-12). ACM.

[VWALL] http://www.fed4fire.eu/testbeds-and-tools/virtual-wall.html

[Wiki] http://en.wikipedia.org/wiki/Latency_(audio)

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 65 of 71

Copyright © FUSION Consortium, 2014

[WZKC13] Y. Wang, X. Zheng, L. Kang, B. Cheng. Research on Initial Filter Criteria of IP Multimedia

Subsystem. In Proceedings of the 2nd International Conference on Computer Science and

Electronics Engineering (ICCSEE 2013), Hangzhou, China, 2013.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 66 of 71

Copyright © FUSION Consortium, 2014

APPENDIX A: NSRP MESSAGE SYNTAX

NSRP consists of a set of binary messages and extensions. The general format of the messages can be

seen in Figure 27.

Figure 27: General NSRP message

Where:

• Version (4 bits): is the version of the protocol

• Message type (4 bits) indicates which type of message follows the generic header.

• Next Option

The majority of NSRP messages deal with resolution from names to locators. Names can have

arbitrary size and belong to any name space of format. NSRP treats them transparently.

Locators can have several components: IPv4 or IPv6 addresses, port number, protocol number or

prefix size. They can also be a tunnel end-point. These combinations are indicated by the following

set of flags:

i. IPv4 or IPv6

ii. Port (included or not)

iii. Protocol (included or not)

iv. Tunnel (yes or no)

v. Prefix (yes or no)

vi. Multiple locator endpoint. This means that more than one locator is going to

be used to identify the same service instance. For example a game service

can have an audio server, a video server and a IM server.

Messages

There are 8 types of messages. Here we include a brief description and their fields:

1) REGISTER/UPDATE

This message is sent to the local resolver to announce the availability of a service instance. It

should be sent periodically to refresh the state in resolvers.

Fields:

• Size of Name (8 bits) in bytes

• Name: Name of the service this instance is replicating

• Send to source FLAG (1 bit): if equal to 1 then resolution should be sent back to the

source of this message. This forces implementation of remote resolution.

• Information Time to live (8 bits): Time in seconds this message is valid for. If not

refreshed information should expire. If equals to zero, means to deregister an

instance

• Number of Locators

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 67 of 71

Copyright © FUSION Consortium, 2014

For each Locator:

• Locator type

• Locator

• Preferences

2) SUBSCRIBE

This message is used by service resolvers to subscribe for updates to services from other

service resolvers. Each subscription has an expire time (Subscription Time to Live) and any

updates should be forwarded until that time arrives. Subscriptions should be renewed before

that.

Fields:

• Subscription ID

• Type of Element (Name, Catalogue, wildcard)

• Size of Element

• Element

• Subscription Time to Live

3) QUERY

This message is used to request resolution of names (1) Generated by a client that wants to

resolve a name and (2) possibly forwarded by a service resolver to another resolver in the

case of interdomain resolution.

Fields:

• Query ID

• Type of Element (Name, wildcard)

• Size of Element

• Element

• Query Time to Live

• More than one replica (flag)

4) DATA

A DATA message contains resolution for one name or a catalogue entry.

If it’s catalogue entry (Subscription ID reply should be of a Catalogue Subscription there

should be two locators: the representative locator and the resolver locator). The utility

function of the service can be included as an option.

Fields:

• Subscription ID

• Number of Locators

• Locator Type

• Locators

• Preferences

5) QOE REPORT

QoE reports are sent from clients to their local resolver

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 68 of 71

Copyright © FUSION Consortium, 2014

Fields:

• Size of serviceID

• ServiceID

• Type of Source Locator

• Source Locator

• Type of Destination Locator

• Destination Locator

• Number of observations

• Type of Observation (Delay, Goodput, Loss)

• Observation

6) HELLO

This message is used by resolvers to build the subscription overlay. It is sent by resolvers to

authenticate themselves before messages get exchanged

Fields:

• Resolver ID

• Signature

7) ERROR

This message contains an error and additional data for the error

Fields:

• Error Code

• Size of extra data

• Extra data

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 69 of 71

Copyright © FUSION Consortium, 2014

OPTIONS

The following options are defined:

1) Session slots: This allows a Zone manager to describe available and used service slots

• Available session slots

• Used session slots

2) Histogram of service: This allows a Zone manager to describe an histogram of service times

that characterizes how the service is being used

• Size of histogram

• Histogram

3) Utility Function: This option allows a service to define an utility function. That is how varying

QoS (delay, throughput, loss) affects the user utility of the service

• Size of utility function

• Utility function

4) Security: Instance authentication – This option allows a Zone manager to authenticate that is

authorise to instantiate a particular services.

This option allows a Zone manager to proof that he can announce instances of a given name

5) Security: Server describes permission – This allows a Zone manager to describe who can

access the service. This is sent to all the resolvers so that they only resolve if authentication

is successful. This should be used with the “Send to source” flag so that final resolution is

made by the Zone manager (and potentially interact with the underlying network to switch

on permissions.

6) Security: Client permission: This is the client counterpart to option 5. Client authenticates at

the edge that it can access the service

7) Transparent Data (sent to instance, sent to client): This implements the “Invoke”

functionality. Data is sent to the instance and this can return data back.

8) QoS constraints: This option allows a client to constraint the result(s) it receives. For example

it may restrict to instances within X milliseconds.

9) Client information: IP address: This option allows a QUERY message to be sent “by proxy” for

a node but indicating that the proximity corresponds to another IP address

10) Client information: GPS information

This option allows a client to include GPS information in order to help the selection of closest

instance

11) Routing hints: This option allows a client to restrict the returned instances to a subset. This

happens when resolution is done remotely.

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 70 of 71

Copyright © FUSION Consortium, 2014

A mapping of which messages can carry each option is shown in Table 7.

Table 7: Options mapped to Messages

 Register Sub. Query Data

Session slots X X

Histogram X X

Utility Function X X

Security:

Instance

Authentication

X X

Security: Service

permission

X X

Security: client

permission

 X

Transparent

Data

 X X

QoS Constraints X

Client

information: IP

address

 X

Client

information: GPS

location

 X

Routing

restrictions

 X

Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms

Page 71 of 71

Copyright © FUSION Consortium, 2014

ERRORS

The following errors are defined for the error message

1) Name not found

2) Instance meeting QoS constraints not found

3) Access Authentication failed

4) Register Authentication failed

5) Resolver not responding

6) Badly formed packet

7) Timeout

