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Abstract  

This deliverable describes the final application prototype use case design, reports on the current 

status of the prototype deployment and reports initial evaluation results. The four applications 

prototype are the media services Electronic Program Guide (EPG), thin client 3D game, media 

dashboard, together with the technical utility streamer service. The applications prototype designs, 

implementations and their use case scenarios are described, including the current status of their 

implementations, followed by an analysis of how the prototypes demonstrate and validate specific 

features of the FUSION prototype. The FUSION features demonstrated by the applications 

prototypes can be classified in deployment, service selection, scaling and load balancing. The status 

of the current prototype for FUSION-enabled services and host environment deployment and its 

initial deployment on the virtual wall at the iMinds facilities is reported. The status report is followed 

at a first evaluation of this FUSION prototype.  
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GLOSSARY OF ACRONYMS 

4G Fourth generation of mobile phone mobile communication technology standards 

API Application Program Interface 

AR Augmented reality 

BGP Border Gateway Protocol 

BW Bandwidth 

C++ Object Oriented Programming Language  

CPU Central Processing Unit 

Ctl Control 

DC Data Center 

DNS Domain Name System 

DRAM Dynamic Random Access Memory 

EC2 Amazon Elastic Compute Cloud  

EPG Electronic Program Guide 

EZ FUSION Execution Zone 

FUSION Future Service Oriented Networks 

GB Gigabytes 

GPS Global Positioning System 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HDD Hard Disk Drive 

HTTP HyperText Transport Protocol 

IP Internet Protocol 

ISP Internet Service Provider 

MOSCOW MUST, SHOULD, COULD, WON'T 

MPLS Multi Protocol Label Switching 

NFS Network File System 

PaaS Platform as a Service 

PoC Proof of Concept 

QoS Quality of Service 

REST Representational state transfer 

RFB Remote Frame Buffer 

RGBA32 Red Green Blue Alpha 32 bit color space representation 

RPC Remote Procedure Call 

Rsp Response 

RTP Real-time Transport Protocol 

RTSP Real-time Streaming Protocol 

RTT Round-Trip Time 

SaaS Software as a Service 

SMART  Specific, measurable, attainable, relevant and time-bound 
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SSD Solid State Drive 

SSH Secure Shell 

Tb/s Terrabit per Second 

TOSCA OASIS Topology and Orchestration Specification for Cloud Applications 

UI User Interface 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNC Virtual Network Computing 

VoD Video on Demand 

VPN Virtual Private Network 

WAN Wide Area Network 

Wifi WLAN products based on the IEEE 802.11 standards 

WLAN Wireless local area network 

XML Extensible Markup Language 

YUV4MPEG2 Uncompressed frames of YCbCr video formatted as YCbCr 4:2:0 
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EXECUTIVE SUMMARY 

This deliverable describes the final application prototype use case design, reports on the current 

status of the prototype deployment and reports initial evaluation results. 

The four applications prototypes are the media services Electronic Program Guide (EPG), thin client 

3D game, media dashboard, together with the technical utility streamer service. This document 

describes the functionality, architecture and implementation of these applications prototypes and 

their current implementation status. 

The features demonstrated by the applications prototypes can be classified in deployment of 

composite services and deployment taking into account metric performance and server capabilities, 

service selection based both on network and service metrics, deployment and scaling of resource 

demanding personalized services with tight QoS constraints, load balancing and service scaling for 

efficient server resource usage, faster deployment and dynamic inter-zone scaling based on changing 

demand patterns and network conditions. 

The status of the current prototype for FUSION-enabled services and host environment deployment 

and its initial deployment on the virtual wall at the iMinds facilities is reported.  

The status report is followed at a first evaluation of this FUSION prototype, which at this stage 

focusses on a functional analysis of service registration and automatic deployment, session slot 

service scaling, and load-aware service scaling and resolving. 
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1. SCOPE OF THIS DELIVERABLE 

2. APPLICATION PROTOTYPE DESIGN AND IMPLEMENTATION 

Based on the analysis of use cases in D2.1 we have selected three application prototypes we are 

implementing to analyse, validate and demonstrate the various features of FUSION. These 

application prototypes are: 

1. Advanced media services Electronic Program Guide (EPG), including a technical utility 

streamer service 

2. Thin client 3D game 

3. Media dashboard 

These use cases resemble real world use cases and concentrate on FUSION specific functionality. 

Each of these use cases will use several functionalities that are provided by FUSION which either 

enable this use case or simplify the development. The game and dashboard prototypes are 

technically similar by being mainly different configuration of the same underlying prototype 

implementation based on the commercial Shark 3D software of Spinor [SHARK3D]. 

2.1 Summary of FUSION functionalities demonstrated in each 

application prototypes 

The following table summarizes, which functionalities of the FUSION framework are demonstrated 

with each use case. Compared to the table in section 3.1, which focuses on the innovation of the 

different FUSION features, the following table focuses on mapping FUSION features to application 

prototypes. 

 Advanced EPG Thin client 3D game Dashboard 

Service Session slots Yes 
Yes, based on node-based factory 

composition 

Multi-service 

configuration 
Yes Yes, based on node-based composition 

Static service graphs Simple graph   

Dynamic service 

graphs 
Service Requests  

Dashboard service 

uses other services 

for media input 

Efficient 

provisioning / 

deployment 

Docker containers 

Evaluator services Simple evaluator Checking for GPU 

Resource sharing 
Shared videos (and 

encoder) 

Support for sharing GPU resources between 

session 

Multi user sessions No Yes No 

Re-use of existing 

software in FUSION 

environment 

Based on Vampire 

framework 
Based on the commercial Shark 3D software 
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The following sections describe the prototypes more in detail. 

2.2 Advanced EPG 

Video services are becoming increasingly personalised, especially with the massive introduction of 

“second screen” or HUD applications. These applications complement the primary (television or 

broadcast) streams with personalised information, either on secondary devices such as tablets and 

smart phones, or overlaid on top of the main device. This personalized GUI will in the coming years 

become increasingly important as advanced content navigation, target for infomercials and product 

placement, and even to add social gaming aspects to the classic TV experience.  

These advanced interactive user interfaces could be very fancy 2D or 3D graphical environments. This 

will lead to massive amounts of potentially highly interactive video and graphics content that needs 

to be generated or processed, and delivered to the end-user on-the-fly, which cannot easily be done 

on devices with limited capabilities (e.g., a smart TV).  

The role of FUSION for such application use case is to optimally take into account the various 

resource requirements and constraints (both compute and networking) during deployment of new 

instances as well as the optimal selection of an instance for a particular client.  

2.2.1 2D EPG Service 

For the first PoC implementation of this application use case, we implemented a basic 2D  interactive  

EPG that enables browsing through a number of dynamic or interactive video sources or static 

pictures, and that can easily be extended towards integrating the output from other FUSION services 

as well.  

This EPG service is developed in the Vampire framework [FV09], a media processing framework 

developed inside Bell Labs for quickly building media applications consisting of a number of reusable 

media components, each of which can be mapped onto a number of application threads.  

A snapshot of the basic EPG service is depicted in Figure 1. 

 

Figure 1– Screenshot of a 2D EPG service prototype 
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2.2.2 Functionality 

For the initial setup, we limited the EPG service to only consist of a fixed number of static input 

streams, together with a series of static images. The end user can interact with the service either  by  

pressing  key  strokes  or  mouse  swipes  to  manually  browse  through  the  video  sources.  

Alternatively, the user can also toggle the service to automatically scroll through all video sources. 

We modified the implementation to support the basic raw video stream format as well as the RFB 

[RT10]  feedback  protocol  for  handling  all  service  communication  as  described  in Deliverable 

D5.1.   

Using the underlying features of the Vampire framework, we reuse all input video sources across all 

sessions using an internal Vampire multicast mechanism to significantly reduce the resource 

requirements. 

This service serves as an example of a personalized single-user streaming service, and can be used 

both as an atomic service (consisting of only the rendering component) or as a service component in 

a composite service (consisting of both a rendering and dedicated streamer component). 

Regarding FUSION functionality, we implemented the following concepts in this first demonstrator 

service: 

• We  implemented the  service  session  slots  concept, allowing a configurable number of 

interactive sessions to be active at the same time; 

• We implemented also the multiple service configuration concept, allowing multiple 

parameterizable service configurations to be added and removed at runtime, sharing the same 

set of session slots for optimal resource utilization. This allows to change the available parallel 

sessions, the output resolution, the endpoint port and the frame rate at runtime.   

• We encapsulate the service components into a lightweight Docker container for efficient 

provisioning and  deployment with minimal runtime overhead. 

2.2.3 Architecture 

This use case consists of one or two service components, namely the EPG rendering component and 

optionally a generic streamer component. Additionally, we also implemented an initial corresponding 

evaluator service associated with these service components. 

The rendering component provides the core functionality of the EPG service and can be addressed 

individually by either clients or other services. Default, the EPG rendering service used the raw 

streaming format. 

The streamer service component is a generic streamer component that currently takes in the raw 

streaming protocol and produces an H.264 encoded video stream. Secondly, it can also forward the 

incoming feedback stream to the connected service. Two key advantages of having a separate 

generic streaming service component are: 

• This streamer component can be mapped onto specialized hardware that is optimized for 

efficient video encoding and streaming, such as GPUs or hardware encoders 

• This enables to have more lightweight and specialized service components, not requiring the 

connecting service components to all have direct access to such hardware environments or 

having to implement such encoding capabilities internally. This can significantly improve 

deployment and runtime efficiency.  
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2.2.3.1 EPG rendering service component 

The internal architecture of the EPG rendering service component is depicted in Figure 2. The key 

component in the internal application graph is the session and configuration factory component, that 

is able to automatically spawn a new session and service configuration specific graph on-the-fly that 

will handle the specific client session for that specific service configuration.  

A user making a service request opens a connection to the TCP port of the corresponding service 

configuration (which is managed by FUSION orchestration and resolution layers). If there are still 

session available, the factory will create a parameterized session graph, make all connections with 

the various shared input videos, and passed the socket to the corresponding components.  All this 

complexity is abstracted via the Vampire framework. Note that the shared input videos are only 

decoded once, and automatically multicasted via an internal shared memory Vampire protocol. 

The available resource and service configuration session slots are all maintained at the session 

factory component. When a user finally disconnects, the session graph is completely removed, the 

session factor component is notified,  which performs the necessary session accounting. 

Using a Vampire-specific communication protocol, an external remote control management 

application can both read out or modify the application properties. Key properties that are relevant 

for FUSION include the available session slots, the service configurations and the service instantiation 

parameters. Each of these can be monitored or modified at runtime. This allows an external wrapper 

to monitor or even change the number of available session slots, add a new service configuration etc. 

In a FUSION-agnostic manner. 

For the interactive streaming protocol, we leveraged the raw streaming format as well as the RFB 

format for the feedback channel. Unless one of the video sources originates from another FUSION 

service, we do not require the FUSION client API for automatically connecting to the optimal 

instance. 
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Figure 2 – Software architecture of the multi-session multi-configuration enabled EPG service 

2.2.3.2 Streamer service component 

The internal architecture of the streamer service component is depicted in Figure 3. The overall 

structure is quite similar to the EPG service component, and we used the same generic session 

factory Vampire component for handling all session and multi-configuration related aspects. 

For every new streamer session, a new internal pipeline and context is created for handling the 

streaming session. Only at the time, the streamer session will open a connection to the upstream 

service. The service name can be either a FUSION service name or an explicit URL. We implemented a 

small FUSION-enabled API that will automatically detect whether the provided service name is a 

FUSION name or URL and respond accordingly. In case it is a FUSION service name, the small library 

will contact a FUSION service resolver for finding the endpoint of an optimal instance of that service. 

Once resolved, the library function will automatically try to open a socket connection to that 

instance.  

 

Figure 3 – Software architecture of the multi-session multi-configuration enabled streamer service 

 

2.2.3.3 Evaluator service 

As part of this EPG service, we also provided an initial evaluator service. Initially, this evaluator 

service is mainly to validate the FUSION workflow during service deployment, but in the last year of 

the project, we will extend and leverage this service for assessing what environment and execution 

zone is most suited for a running the EPG (and streaming) service. 

2.2.4 Implementation 

We have implemented the various software components using our Vampire framework [FV09], 

which enables quickly developing media processing applications on multi-core architectures. We 

implemented the service architecture, the functionality and the basic protocols described above in a 
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number of software components. Although the service components do incorporate concepts such as 

service sessions, session slots and multiple service configurations, these were implemented in a 

FUSION agnostic manner. 

All FUSION-specific communication was provided in an external simply Python wrapper that 

communicates with the zone manager and the ETCD key value store. This Python wrapper regularly 

inspects the Vampire application using a dedicated Vampire protocol regarding the available session 

slots, and pushes changes to the zone manager. Vice versa, it monitors the request for adding a new 

service configuration from the ETCD data store and subsequently triggers the Vampire application to 

add and configure a new service configuration on a new port using the same custom Vampire 

protocol. As such, the application itself can be designed independent of the FUSION protocol. 

For streaming video and the feedback channel, we implemented the raw protocol described in 

Deliverable D5.1. 

The application binary, wrapper script, static input videos, images and other artefacts subsequently 

were wrapped into a Docker container image using a simple Dockerfile, enabling easy and fast 

deployment of the service on any Docker-enabled machine. We developed such container for both 

the EPG rendering and streamer service components. 

For reusability and fast provisioning, we made optimal usage of the image stacking concept in 

Docker, where different layers of containers can be layered on top of each other and shared in a 

hierarchical manner. As such the base layers (e.g., consisting of the basic libraries) can be shared by 

many Docker images, and only the application-specific binaries, libraries and artefacts need to be 

provided in a separate layer. When subsequently provisioning a new machine with a new Docker 

container, only the upper file system layers need to fetched remotely, and not the entire VM image. 

As an example, the current full hierarchical structure of all container image layers as currently used 

for the FUSION prototype and demonstrator components is shown in Figure 4. 

 

Figure 4 – Docker image layers with relative layer sizes 

As can be seen, all FUSION orchestration prototype components (i.e., zone manager, DCA, domain 

orchestrator and resolver) are built on top of the same Ubuntu and Flask library layers. As a result, 

the size of the application-specific layer is extremely small. Similarly for the application services and 

evaluator service, by carefully reusing particular libraries as much as possible by putting them in 
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common image layers, it is possible to keep the sizes of the application-specific layers to a bare 

minimum. For example, image the EPG service is currently already provisioned in some execution 

zone. In case the virtual desktop service needs to be provisioned and deployed, only the last layer 

(i.e., 2.1 MB) needs to be fetched remotely during provisioning, instead of several hundreds of 

megabytes or gigabytes of data, significantly reducing both the provisioning delay, storage 

requirements as well as network bandwidth requirements. 

Note that for the classical VM-based deployment, we simply wrap the Docker container in a VM, 

which is something that the DCA layer can very easily can do automatically on any IaaS cloud 

infrastructure, by injecting the Docker container in an upfront prepared and platform optimized VM. 

2.2.5 Integration 

Figure 5 depicts how the EPG rendering service is currently integrated in the FUSION demonstrator; 

note that the integration of the streamer service component is identical. As mentioned in the 

previous section, the wrapper script is responsible for all FUSION-specific interactions as well as 

starting the EPG application. The entire service is wrapped in a Docker container, which the DCA 

layer knows how to efficiently deploy on the underlying architecture.  

 

Figure 5 – Integration of the EPG service in FUSION 

 

Apart from the Docker container, we also provided a corresponding evaluator service (which is also 

wrapped in a Docker container), as well as an initial simple manifest which is compatible with the 

current version of the prototype. 

As mentioned earlier, the service currently supports session slots, service instantiation parameters as 

well as multiple dynamic service configurations. 

2.2.6 Future implementations 

In the final year of the project, we may integrate a second EPG service, such as for example a  3D EPG 

service as depicted in Figure 6, which has more demanding resource requirements (e.g., GPU 

availability, etc.), and for which the thin-client approach is even more crucial, especially if such EPG 

services also should be easily supported on TVs, without being constrained by the limited capabilities 

of the device with the lowest capabilities. 
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Figure 6– 3D cube EPG prototype 

 

2.3 Thin client 3D game 

A thin client game is an interactive software where the rendering of the 3D scenes is not done on the 

end user’s device but on a separate server from where it will be delivered as a video stream. The end 

users only launches a viewer application that decompresses the video stream and presents it to the 

user. Additionally the viewer has functionality to capture input and pass it back to the rendering 

server. All in all this approach is comparable to remote desktop applications like the RDP or VNC 

protocol. 

It is a more and more interesting for application developers, since applications that need high 

computational power can also be accessed on weak (e.g. mobile) devices. 

The thin client 3D game will be implemented in two steps: in a first step the game will be 

implemented as a single user application where world simulation and 3D rendering are performed by 

one single service. This step is done as a preparation of the second step, where the application will 

be extended to multi-user sessions (i.e. multiplayer games). For this the world simulation and the 

rendering are split into two separate services. The reason is that this approach will be more common 

in real applications: it is easier to scale the applications to more users if the world simulation is done 

in a separate service because the calculation power needed for the 3D rendering can be offloaded to 

separate hardware. Since the world simulation has to be done centralized (except some more 

sophisticated approaches taken for example in massively multiplayer games), but rendering can be 

decentralized, this is the optimal architecture for scaling the number of users. 



D5.2 Final use case design, report on prototype deployment and initial 

evaluation results 

Page 16 of 50

 

Copyright © FUSION Consortium, 2014 

2.3.1 Functionality 

The first step of the demonstrator can be interpreted as a single user service. Since the video will be 

streamed to the end user device this will be a streaming service. The second step of the 

demonstrator will implement a multiplayer game and can therefore be seen as a multi user 

streaming service. 

To perform the rendering it is necessary to have access to the GPU. This is a non-standard 

requirement towards the execution zone which has to be checked whether it is met by using the 

evaluator services. 

At the testing site probably only one GPU powered server will be available, which has to be selected 

by the evaluator service. This means that for a multiplayer game (step 2) with two users both have to 

be rendered on the same hardware. The world simulation will run on separate hardware decoupled 

from the rendering services. Since each user’s rendering output can be seen as independent from the 

other’s rendering output, the rendering could be realized as two independent rendering services or 

as one rendering services with two different session slots, which use resource sharing (e.g. the 3d 

model data). 

Compared to the EPG service the network distance between streaming source and consumer is more 

relevant, because in contrast to the EPG service the game client is interactive. Buffering of video 

streams is therefore not possible. 

This demonstrator will largely depend on the utilization of the existing Shark 3D software [SHARK3D]. 

Therefore this demonstrator can also be seen as a practical test to measure how much changes and 

adjustments have to be applied to existing software to enable it as a FUSION service. Compared to 

the EPG service the code base that has to be prepared for FUSION is larger and may therefore 

provide a valid scenario to test, which efforts have to be made to enable existing software for 

FUSION. 

To summarize this demonstrator will make use of the following functionalities provided by FUSION: 

• Evaluator services 

• Low latency streaming services 

• Session slots with resource sharing 

• Single and multi-user services 

• Integration of existing professional software into FUSION 

• Hardware access (GPU) 

2.3.2 Architecture 

For this demonstrator the Shark 3D software [SHARK3D] will be packaged into docker containers and 

deployed the same way as for the EPG use case. From a FUSION perspective the Shark 3D containers 

will behave the same way as the EPG containers, so the existing infrastructure can be used. 
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The commercial Shark 3D Software [SHARK3D] used for creating the game prototype 

Inside the containers, a connection between the Shark 3D software and the FUSION API has to be 

established. Two possible solutions are either to extend the Shark 3D software to directly call the 

REST API which means to add HTTP functionality to the software. This approach may be efficient 

regarding runtime behaviour. Another approach would be to package a separate bridging service 

inside the same container, which communicates to the Shark 3D software on the one hand and the 

FUSION API on the other hand. This service could be implemented in Python. The Shark 3D software 

already has an interface for network communication (Telnet based), so this approach would merely 

mean write a translator from custom Shark 3D protocol to FUSION REST calls.  

Since the Python libraries to communicate with FUSION are already available from the EPG use case 

and there are Python implementations available for the Shark 3D protocol as well, this can be 

implemented with very few efforts. The runtime efficiency will not be as good as for the integrated 

approach, but since calls to the FUSION API are for management purposes only (no streaming data 

delivered), the overhead will be small. Therefore this solution is currently preferred and will be 

implemented. 

 

 

For the first step of the demonstrator the world simulation and the rendering will be performed in 

one monolithic service. This service will be connected to the thin client application on the user 

device. 

In the second step the service will be split up into two services, a simulation and a rendering service. 

The rendering services will connect to a single simulation session which may run on the same 

execution zone or on another one. Since only one execution zone with GPU will be available, the 

rendering service will only be instantiated once with multiple session slots.  

Docker container

Shark 3D application

FUSION APIPython Protocol Bridge 

REST

Shark 3D protocol
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The connections between rendering service instance and world simulation instance will be using the 

already existing Shark 3D network protocol, the connections between rendering service instance and 

thin clients will be realized using a streaming protocol and backwards input channel. 

 

 

2.3.3 Implementation 

For packaging and deployment a docker / vampire setup as described in the EPG use case will be 

used. The FUSION API will be realized as REST service as described in the EPG use case. 

The Shark 3D software is a compiled C++ software consisting of several modules that are linked into 

one Linux executable using static linking [SHARK3D]. The configuration of each module is done with 

separate configuration files, which make it possible to start and configure a module as needed. 

Therefore the one single executable can be used both for the world simulation and the rendering 

service. The different behaviour is achieved by different configurations. This also enables easier 

deployment if pre-distribution is chosen, because only differences in configuration have to be 

transmitted as deltas to the execution zones. 

Execution zone (w/o GPU access)

Docker container

Shark 3D world simulation

Thin client A

End user device A

Execution zone (with GPU access)

Docker container
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1
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1 2 n

2
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Hardware layer
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Service specific software

n Service slot

Low bandwidth application specific protocol (e.g. world sync)

High bandwidth application specific protocol (e.g. video / input)

FUSION REST protocol

Session 1 Session 2
Shared

Resources
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The GPU evaluation service however may be also be based on the current Shark 3D software, since 

this software can evaluate best which capabilities are needed for the rendering (shader model etc.). 

It has to be decided whether the GPU evaluation service is also a full version of the Shark 3D 

software with just another configuration or a separately built software derived from the existing one. 

Probably, because auf the necessity to keep the evaluators very lightweight, it may be necessary to 

strip all unneeded modules from the existing software and create a very thin separate software for 

the evaluation service. This approach is currently planned. 

The protocol for connecting the thin clients to the render services will be based on the VNC / RFB 

protocols. These have the advantage, that applications implementing these protocols are already 

existing, meaning that for testing purposes an existing application can be used to implement the 

missing functionality at the renderer. One disadvantage is that the available compressions for 

standard RFB are optimized for remote desktop connections, meaning that they work best if large 

areas of the transmitted image remain static and only small areas change. For this use case this may 

however not be the case. It will therefore probably be necessary to extend the existing protocols by 

additional compression algorithms. For the FUSION port for example, Shark 3D was prepared to 

render compressed video streams as 3D textures on the one hand and to render output which can 

then be encoded as video stream on the other hand. This functionality is provided by the 

enhancement for the graphics back ends in combination with an integration of the FFMPEG library 

[FFM14]. The advantage of the library is that it provides support for different state of the art 

compression algorithms. 

Another architectural change in the Shark 3D engine, which would also be necessary for any other 

software package using a similar architecture, is the abstraction of the input to also accept input that 

is transmitted via network, for example by using the input events provided by the RFB. 

One challenge here is the relatively complex handling of input. Since keyboard details are different 

for example on different operating systems (e.g. compare the Apple keyboard with a Windows 

keyboard) there has to be some abstraction and mappings between keys. The RFB already offers 

some rules for that, but they are not always as clear as they are expected to be. 

When using advanced compression algorithms the standard VNC clients will no longer be suitable as 

thin client application. Two options are possible and can be implemented without big effort to 

enable demonstration of the described functionality. Either the existing client developed by ALUB for 

the EPG use case is extended or a proxy application is installed which locally converts the 

compressed video stream into uncompressed video and forwards this to the VNC client. Input data 

from the client is just passed through. 

The connection between the world simulation service and the renderers will be realized by using the 

existing Shark 3D network protocol, the communication will be transparent to FUSION. 

2.3.4 Current status and next steps 

The following table summarizes the current status of the prototype implementation plus planned 

next steps. 

Application 

prototype 

feature 

Description 
Accomplishments 

so far 
Next steps 

Session slots 

Session producer for handling and 

managing service session requests on 

runtime side and corresponding editor 

extensions 

Successful 

production of 

multiple session 

instantiations 

Prototype specific 

definitions of 

shared and 

session-specific 

data 
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World simulation 

deployment 

Includes reactivation of Spinor's Linux 

port of the Shark 3D world simulation 

and integration into Docker 

Successful 

compilation of 

most modules. 

Compilation of 

remaining 

modules. 

Packaging of 

binaries and 

creation of 

resource 

packages. 

Renderer 

deployment 

Includes reactivation of Spinor's Linux 

port of the Shark 3D renderer and 

integration into docker 

First tests with 

Ubuntu and 

Docker and GPU 

access 

Renderer code 

porting, 

compilation, 

packaging of 

binaries and 

creation of 

resource 

packages, 

especially shader 

code generation 

Input channel 
Keyboard, mouse based on VNC 

protocol 

Basic 

implementation 

of VNC protocol 

Connecting input 

data to session 

instances 

Output video 

channels 
 

Successful 

rendering into 

uncompressed 

image sequence 

- 

Output video 

channel 

compression 

Based on ffmpeg. 

Successful 

rendering into 

compressed video 

data stream  

Streaming 

compressed video 

data into network 

connections 

Single user game 

application 

Setup game application where game 

world simulation and 3D rendering are 

performed by one single service 

- 
Game prototype 

programming 

Multi-user game 

sessions 
Setup multi-player game application - 

Game prototype 

programming 

 

2.4 Dashboard prototype 

The dashboard use case is based on gaming console main menus, which are a merger of EPGs and 3D 

games. Real time data from different sources is merged as video streams or interactive video streams 

(see Thin client 3D game use case) into an interactive world, where the user can move around and 

consume the data. It therefore integrates the both use cases described before in one more advanced 

and challenging application. 

To create a representative example different service types will be integrated to one single dashboard 

application. The combination of the services will take place on demand, that means that the service 

graph will not be deployed statically but will be created depending on the user input at runtime. 
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2.4.1 Functionality 

Since the Dashboard prototype is a mixture or EPG and Thin client 3D game, it combines the 

functionality of both use cases. 

The most important additional feature is the dynamic combination of different services. The 

dashboard service as main service presents to the users the output of other services, like video 

streaming and chat service.  

As with the Thin 3D Client the rendering will be performed on GPU, so also here the evaluator 

services are necessary. Since the graphics backend for both the Thin Client 3D Game and the 

Dashboard service are the same, it is possible to re-use the existing evaluator services. This can be 

seen as a general good practice in FUSION environment since the outcomes of evaluator service 

invocations may be cached and re-using existing evaluator services means re-using existing evaluator 

results and therefore reduces the number of necessary evaluator runs. 

• Multi-user service 

• Low latency streaming services 

• Re-use of existing evaluator services 

• Dynamic service graphs 

• Session slots with resource sharing 

• Hardware access (GPU) 

 

2.4.2 Architecture 

Main feature of this use case is the dynamic connection and disconnection of other services. This 

integration of other services can occur at different places, either at the world simulation service or at 

the rendering service. For video streams rendered into the graphic output it is for example not 

necessary to route them through the world simulation service since only output is affected. This 

connection can be made during runtime and can even be different for different users. This may for 

example be wanted to display different contents to different users which are in the same session 

(e.g. localized video streams or commercials). 

Other services like the chat service rely on a centralized structure and may therefore be routed 

through the world simulation service. 

The video streaming services need higher bandwidth connection than the world simulation server, so 

it may be necessary, to place them nearer to the rendering services than the world simulation. This 

may also be checked by a separate evaluation service. 
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2.4.3 Implementation 

This use case extends the previous described use cases by a chat service and the combination of 

world simulation and streaming services. Since the chat service is only there for demonstration 
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Docker container
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End user device A
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Docker container
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n Service slot
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reasons, a simple implementation using Python will be deployed using the Docker environment 

described before. For simplicity, the communication between world simulation service and chat 

service will take place using a rest protocol. Inside the world simulation service, a Python bridge will 

translate between Shark 3D application and the chat service API. 

The combination of the video streaming services and the world simulation service in the renderer 

services will be done the following way: The world simulation service provides the data to update the 

current world state in the renderers. This state includes a plane or other surface containing a video 

texture. The video texture is defined by a resource identifier, which will be a FUSION service 

identifier. This identifier is used at the rendering service to query the actual service instance 

providing the stream from FUSION. This query can be session specific, so that different users can get 

different streams. 

The video stream is decoded using the FFMPEG library and the content is copied into the texture 

buffer each frame. This texture buffer is then used for the rendering of the scene. This way the same 

scene used by different users will receive different contents, depending on the session slots. 

For real world applications this architecture can be used to reduce required network bandwidth 

because the video streaming services can be places nearby the renderers. The possibly far distance 

connection between renderer and world simulation only needs low bandwidth because of the highly 

optimized application specific geometry-based synchronization protocol. 

 

2.4.4 Current status and next steps 

The dashboard is based mainly on the same components as the game application. Therefore the 

following table only includes modules which are specifically for the dashboard. 

Application 

prototype 

feature 

Description 
Accomplishments 

so far 
Next steps 

Output channel 
Keyboard, mouse based on VNC 

protocol 
- 

Implementation 

and connection 

with session 

instances 

Input video 

channel  

Implementation of communication 

channels (video and input) between 

service components implemented by 

different FUSION partners 

Streaming of 

uncompressed 

video stream into 

network 

communication 

channels 

- 

Input video 

channel 

decompression 

Based on ffmpeg. - Implementation. 

Connection with 

EPG prototype 

Connection of the EPG prototype with 

the dashboard prototype 

Statically 

configured 

connections 

established 

Dynamically 

controlled 

connections 

Single-user 

dashboard 
 - 

Dashboard 

programming 
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Service 

connections 

Dashboard connecting to media 

sources 
- 

Implementation 

of data 

connections and 

integration into 

prototype setup 

Multi-user 

support 
 - 

Implementation 

of user sessions 

Chat  - 

Implementation 

of chatting 

functionality 

 

3. FUSION PROTOTYPE USE CASE SCENARIOS 

While the previous chapter describes the application prototypes itself, this chapter describes how 

the integration of the FUSION component prototypes with the application prototypes are used to 

test, validate and demonstrate different use cases. 

3.1 Summary of use case scenario characteristics 

Compared to the table in section 2.1, which focusses on the relationship of FUSION features to the 

application prototype, the following table focusses on the characteristics of the FUSION features 

which are tested, validated and demonstrated with the FUSION prototype together with the 

application prototypes. 

FUSION Feature Characteristic beyond state of the art 

Static service graph deployment 

Deployment decision depends on the 

requirements of multiple related software 

components based on evaluator services 

Dynamic service instance graph deployment 

using FUSION service selection 

Implicit formation of service graphs without 

requiring complex coordination or 

specification  

Better resource utilization through multi-

configuration service components 

Deployment of multi-configuration service 

component which can be part of multiple 

service (instance) graphs at instantiation 

time 

Satisfying service specific requirements in 

heterogeneous environments 

Evaluator services for taking into account 

static and dynamic service requirements as 

well as infrastructure capabilities at the 

service layer 

Service selection based both on network 

and service metrics 

Service resolution is able to select between 

service replicas running in different 

locations according to current server 

capacity and network performance 

characteristics, matching service-specific 

performance targets 

Service deployment on third-party More flexibility: Closer to the user, higher 
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hardware  QoS 

Hardware abstraction for service providers 
Light-weight containers for service instance 

isolation 

Resource sharing of multi-media service 

instances 

Multiple service instances of complex 3d 

applications sharing data structures 

Fast deployment 
Reduce startup-time from 10s or 100s of 

seconds to the order of seconds 

Dynamic inter-zone scaling 

Dynamic inter-zone scaling based on 

changing demand patterns and network 

conditions 

 

3.1.1 Composite service deployment 

For demonstrating how FUSION will handle the deployment and management of composite services 

as well as composite service instances we will focus on three main cases, on which we will shortly 

elaborate: 

• Deploying a static service graph; 

• Dynamic service instance graph deployment using FUSION service selection; 

• Better resource utilization through multi-configuration service components. 

The first case deals with deploying a static service graph within a FUSION execution zone. In this case, 

the graph is fully specified statically within the service manifest, and it is up to FUSION to most 

optimally deploy this in a zone. We will for now focus on deploying such graphs within a single 

execution zone. However, the same strategy can later be extended at the domain level to deploy 

such composite services across multiple execution zones. 

Key aspects to demonstrate and evaluate concerns the role of the evaluator services in case of static 

service graphs, the configuration of the various service component instances at deployment time as 

well as the sharing of service component instances across multiple service graphs (possibly coming 

from different composite service types). 

In the second case, the service graph is not statically described in a manifest, but dynamically and 

more implicitly formed and changed at run time. This allows for more flexible distributed composite 

service, without requiring complex coordination or specification. We will demonstrate how FUSION 

service selection can be used for very quickly and efficiently creating or changing the composition of 

service instances to form more complex dynamic (distributed) service instance graphs. 

In the last case, we will demonstrate the advantages of multi-configuration service components. A 

multi-configuration service component is a service component that can be part of multiple and 

potentially independent service (instance) graphs at instantiation time. 

We will demonstrate how the concept of session slots as well as flexible session-slot based service 

scaling can be leveraged for sharing service components across multiple composite services, thereby 

further increasing the resource sharing capabilities. 

3.1.2 Service deployment taking into account metric performance and 

server capabilities (e.g. the edge) 

Another feature to demonstrate is the effectiveness of the FUSION architecture for efficiently 

deploying demanding services with specific requirements in a distributed heterogeneous 
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environment. We will demonstrate and evaluate the concept of evaluator services for taking into 

account static and dynamic service requirements as well as infrastructure capabilities at the service 

layer.  

An example of a static service requirement includes the availability of a GPU that has the appropriate 

features. The evaluator service can very efficiently and in very high detail provide the necessary 

feedback via a simple score whether a particular execution environment is effective (and cost-

efficient) or not. 

An example of a more dynamic service requirement includes the overall QoS that a particular service 

experiences when running in a particular execution environment. Execution zones that oversubscribe 

their available resources too aggressively, resulting in poor QoS for the deployed services, should be 

penalized so that future service deployments may consider other execution zones or deployment 

environments. We will illustrate how evaluator services could leverage historical data for making 

better decisions for deploying particular services on particular environments. 

At the platform layer, we will demonstrate the effectiveness of a heterogeneous cloud platform for 

efficiently deploying the services on the available infrastructure, taking into account application 

characteristics as well as platform capabilities for providing significantly better QoS and efficiency 

when deploying demanding or sensitive applications on an unknown (cloud) execution environment. 

3.1.3 Service selection based both on network and service metrics 

FUSION service resolution is able to resolve queries for a service type to return the “best” running 

instance of that service for the endpoint requesting the service. “Best” means according to a 

combination of server and network metrics while respecting policies of the ISP deploying the service 

resolution plane. Network metrics include latency and throughput, service metrics are abstracted as 

session slots, network policies are related to the cost of forwarding traffic over inter-domain links. 

Optimal selection depends on service-type and a service-specific utility function will be defined per 

service to guide the service resolver decisions. 

A network performance database in each service resolution domain will be populated by various 

means – local domain network topology and monitoring data; metrics provided by specific remote 

service resolution domains, e.g. using ALTO network and cost map information; global network 

measurement data provided by systems such as RIPE Atlas; peer-to-peer monitoring information, e.g. 

to specific target execution zones in remote domains; QoE feedback from users from prior service 

invocations. The network performance data will be used by service resolvers to identify which 

execution zones, hosting a service instance, meet the target performance metrics for that service 

type. 

Available session slots per service type will be advertised by execution zones to local service 

resolvers, together with additional service information, such as the histogram of service duration 

times. Service resolvers will use current session slot availability to determine where capacity exists to 

serve a query. Resolvers will aim to balance load between execution zones and the histogram of 

service execution duration will be used for this purpose. 

Finally, for inter-domain service resolution to execution zones in remote service resolution domains 

the inter-domain links will have different costs according to the business relationships with adjacent 

ASes depending on whether they are customer-provider or peering relationships. Service resolution 

will aim to minimize the costs of traffic on inter-domain links while meeting network performance 

targets and available server capacity constraints. 

Service resolution based purely on network performance metrics will not take into account the 

dynamics of available server capacity, potentially resulting in blocked service requests by the 

selected execution zone. Resolution based purely on available server capacity and service duration 

statistics will ensure service requests can be processed by the selected execution zone but network 
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performance metrics (latency, throughput, etc.) to that destination may not be suitable for the 

service type. Resolution based on both network and service metrics will allow load to be balanced 

between execution zones while meeting the target network performance for the service and 

minimizing the cost of inter-domain traffic. 

3.1.4 Platform for deployment and scaling of resource demanding 

personalized services with tight QoS constraints on a highly 

distributed infrastructure 

The demonstrator will also act as a personalized service with QoS requirements. This will be 

implemented as a game prototype service with a thin client approach. The server-side rendering and 

compression will require tight QoS to enable interactivity for the user. 

This gaming prototype will be an interactive 3D world, where the user can walk around, and interact 

with in-game objects. There will be a screen or advertising pillar that streams video data from other 

services into the 3D world. This ensures very close similarity with the interactive dashboard, so that 

the advantages of FUSION for both variants can be demonstrated within a single application. 

There are several technologies and advantages of the FUSION project, that can be demonstrated by 

enabling the demonstrator to support this variant: 

First of all, it can be demonstrated that FUSION enables service providers to publish demanding 

services without the need of installing costly hardware by themselves, but the operation of the 

datacenters and management of the resources is handled by FUSION or the infrastructure providers 

respectively. While similar approaches are already possible with cloud computing, the instantiation 

of the service near the user, which enables higher QoS, is not yet possible with today's cloud 

computing: large cloud computing providers like Amazon have large datacenters at fixed positions, 

which normally causes a high network distance to the end user while smaller cloud providers, which 

may have installations nearer to the user, only support smaller regions. 

The second FUSION feature that can be demonstrated is that a homogenous environment is 

provided, independent where the service is running. For the demonstrator this will be a Linux x86 

environment. When the service is bundled for this environment it can be started on any hardware 

managed by FUSION. To isolate the services from each other, a lightweight container approach using 

the Docker software will be used. This ensures that the services can not interfere, while on the other 

hand reducing the required disk space overhead compared to virtual machines. 

For Docker containers it is possible – similar to some VM implementations – to create basic 

containers that contain the main environment which are per-distributed. The actual containers later 

only require the distribution of the container deltas, which can be very small, depending on the 

service. With this technology the time overhead for moving a certain container to a target machine 

can be reduced to a minimum. 

This is a strong argument for using the Linux operating system, since Docker requires it. Another plus 

for Linux is the easier management of licenses, especially with regards to automatic downloading 

and starting of the containers, which would raise licensing issues when using other – probably 

commercial – operating systems. 

The demonstrator will therefore be packaged as a Docker container and uploaded to a server 

accessible by FUSION. After registering the service it can be deployed by FUSION to a specific 

hardware and started. 

To find the optimal position to start a service the FUSION architecture uses the concept of 

demonstrator services which are run in advance to test the available hardware whether it is feasible 

for a given service. For the demonstrator with the server-side rendering there are two features that 

must be fulfilled by the underlying hardware: first of all, GPU access must be granted. Second the 
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network distance to the streaming client must be as short as possible to reduce the time between 

input and feedback. Both of these restrictions can be tested by the evaluator services. 

To report the feedback whether GPU is available and the network quality is sufficient for the 

streaming of the rendered content, an interface to the management layer is required. This is not only 

restricted to the evaluator services but also can be used by the application itself. These interfaces 

widely replace static manifest files since they can dynamically calculate whether requirements are 

met or not in contrast to fixed restrictions that have to be expressed in manifest files. 

These management interfaces will communicate using a REST protocol, which makes it especially 

easy for service provider to implement or adjust to their needs. For the implementation of the 

demonstrator variants for example the logic handling the communication will be written in Python 

with the option to change to a more efficient language if this would be necessary. 

The management of different service instances and user management can be demonstrated with the 

demonstrator in different ways: Either multiple players join the same session like in a classical multi 

player game or it may be necessary to have separate sessions (if they both want to use it as a single 

player game) but it may be still efficient to handle both within the same service instance. The 

demonstrator will show the different approaches necessary to provide both functionalities. 

By installing virtual screens in the game worlds, which display the content from a different service, 

the demonstrator also proves the possibility of combining multiple services dynamically. This is for 

example required by the dashboard use case, which combines multiple streams into one interactive 

application. 

3.1.5 Load balancing and service scaling based on session slots enabling 

more efficient server resource usage of media services 

Besides the better placement of services another advantage of FUSION is the better usage of 

resources. The demonstrator will make use of the session slot mechanism to offer multiple session 

slots to FUSION. With this technique, multiple users can connect to the same game rendering service 

without knowing about each other, i.e. both sessions will be handled as single player games. The 

advantage will be, that since both players play in similar worlds, the rendering service only has to 

load the graphics data on the GPU and can use it for rendering of both scenes.  

Depending on the size of the graphical assets, the client may also benefit from a shorter start-up time 

of the service because if the service is already loading and has vacant slots available, starting the 

service from the viewer's perspective is only connecting to the existing instance and loading and 

probably decompressing the data into GPU memory is not required. 

Precondition for this to work is that the service logic software supports multiple session slots in an 

intelligent way. A simple method would always be to internally (inside the container) start a new 

process. But in this case the resource sharing advantage would be lost. It is therefore necessary, that 

the software is prepared to serve multiple incoming requests in parallel. Efforts have been taken to 

prepare the Shark 3D engine for supporting multiple session slots, so that the demonstrator can 

benefit from these advantages. 

On the other hand the rendering service can only handle a certain number of clients connected 

because, depending on the complexity of the scene and the underlying hardware, the rendering 

takes some time. This hardware dependency is also a good example for the usage of evaluator 

services and dynamic performance measurements as opposed to static manifests, because it allows a 

more fine grained reaction on performance bottlenecks by adjusting the number of available session 

slots. 
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3.1.6 Faster deployment 

One of the SMART objectives in FUSION is to reduce the start-up time for remotely executed service 

component instances to within the order of seconds compared to today's equivalent operation of 

instantiating a virtual machine in 10s to 100s of seconds.  

This is important in the on-demand scenario, where services may have to be deployed on-demand in 

a particular execution zone when a new service request is made by a user. For example, for the long-

tail of less popular services, it would be too expensive to deploy at least one instance of a particular 

service in (almost) every execution zone close to every user. In such cases, instead of using a more 

centralized service instance that has worse latency characteristics, it could be beneficial to deploy a 

new instance on-the-fly close to the requesting user. This of course requires deployment delays in the 

order of seconds instead of minutes. 

Another motivation is to be able to cope with flash crowds, where suddenly huge amounts of 

requests are made for particular services within a region. In such case, being able to very quickly 

scale out or deploy new instances will significantly improve perceived QoE. As we target mostly long-

running demanding services in FUSION where each service instance only can handle a discrete 

amount of sessions in parallel, FUSION must provide efficient deployment and scaling mechanisms to 

effectively deal with such dynamic behavior. 

As such, we will demonstrate the benefits of using lightweight containers both for packaging as well 

as deploying FUSION services, and compare this with classical VM-based service deployment. We will 

demonstrate the two main benefits:  

• Very fast deployment, in the order of seconds (at most); 

• Faster (pre)provisioning due to shareable container image layers. 

3.1.7 Dynamic scaling based on changing demand patterns and network 

conditions 

Current cloud scaling approaches only take into account load in the local data center to up- or 

downscale new service instances. In contrast, the FUSION project targets a global optimization of 

service deployment across a multitude of distributed, possibly smaller, execution platforms that 

interfaces with a network-aware service request resolution. 

The contribution of the FUSION project in this domain is that we demonstrate the benefits of 

interfacing between the service orchestration layer and the service request resolution layer. The 

FUSION orchestration layer is responsible for monitoring the current service load and taking the 

necessary deployment and scaling decisions, given network layer conditions and policies. Especially 

the placement of multimedia services can have a significant impact on the network, as these services 

are long-lived and involve high-bandwidth streams. Conversely, service placement of interactive 

services like gaming require low latency to the users. This can only be achieved by deploying services 

at multiple places in the network. 

The interfacing between the orchestration and service resolution layer involves two scaling 

mechanisms: 

• Up- or downscaling instances in a particular zone 

• Deploying the service in a new execution zone, or unregistering the service from that zone 

Whereas similar approaches have been demonstrated in the past in the context of CDNs we 

specifically target thousands of services that need to be distributed across tens of microdatacenters. 

Content can be easily replicated across servers, but services need to be provisioned, can typically 

handle only a limited number of users in parallel or are highly personalized. Hence, we need to take 
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into account service holding time distributions, as well as more limited infrastructure availability in 

microdatacenters. 

3.2 Service Registration and Automatic Deployment 

This scenario has two purposes. First and most important, the goal of this scenario is, from a 

functional perspective, to validate whether the prototype as a whole as well as the key FUSION 

functional blocks, effectively allow for efficiently and optimally deploying new instances of existing or 

new services across multiple zones in a particular FUSION domain. 

As service deployment involves almost all key functional blocks at all layers of FUSION, it is the ideal 

scenario to validate and evaluate the interfaces, interworking as well as implementations in between 

and of each of those blocks.  

Apart from the overall end-to-end functional evaluation, we will also focus on evaluating the role and 

effectiveness of key enabling FUSION technologies and concepts, such as lightweight containers to 

reduce deployment and provisioning time as well as runtime overhead, the benefit of having 

evaluator services, etc. 

This will result in a number of scenarios, focussing on evaluating different features in each scenario. 

• In a first scenario, we will manually register a FUSION demo service such as an EPG service or 

Shark 3D service and manually trigger the domain orchestrator to deploy the service in an 

execution zone, triggering first its corresponding evaluator service (if any). This should result in 

the application service to be deployed and accessible from a test client. This scenario tests the 

deployment of atomic services in an arbitrary execution zone. As part of this scenario, we will 

also evaluate the deployment of VMs compared with lightweight containers. 

• In a second scenario, we will register a FUSION demo service and let the domain orchestrator 

automatically deploy and scale an appropriate number of instances in a number of execution 

zones. 

3.2.1 Involved components, their functionalities and implementations 

Component Functionality Implementation 

Service Component EPG and Streamer service components, 

with corresponding evaluator service(s) 

Shark3D game service 

FUSION-enabled services 

Domain Orchestrator Service registration, service deployment, 

evaluator-service based service 

placement, etc. 

Main FUSION prototype, 

implemented in Python and 

wrapped in Docker container 

Zone Manager FUSION service lifecycle management 

and intra-zone orchestration: session 

slots, evaluator services, etc. 

Main FUSION prototype 

Service Resolver Allow client to automatically find an 

active instance with available session 

slots. API interaction with ZM regarding 

available session slots. 

Simple FUSION prototype 

Data Centre Adaptor Implement abstraction layer between 

FUSION ZM and underlying DC 

management. 

At least one FUSION prototype, 

including a minimal Docker and 

KVM enabled implementation 
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Client Simple interactive client  Simple Java client 

 

3.2.2 Means of verification 

First, to verify each of the components, we will provide a number of simple service manifests, 

register them into the prototype deployment and subsequently deploy a number of instances in one 

or more execution zones. Subsequently, we will connect to the application services in a number of 

settings and validate whether we can connect to these services as well as how smooth these services 

are running. This will be presented in a live PoC demonstrator. 

This demonstrator will involve a web interface to register new services, deploy new instances, see 

the status of the various components, the number of session slots, etc. 

Second, we will evaluate the total time it takes from deploying a new service and until the 

corresponding locator is announced and propagated throughout the service resolution layer. We will 

compare lightweight containers with classical VM based deployments. 

3.3 Composite services 

• Evaluate three scenarios: 

o Static service graph deployment (intra/inter-zone) 

o Dynamic service instance graph deployment 

o Multi-configuration service components (for better resource utilization) 

The third scenario covers the multi-configuration feature of (composite) service components, 

enabling a better resource utilization as well as faster virtual scaling of new service instances across 

existing instances of common service components (see Deliverable D3.1 for a detailed explanation of 

multi-configuration service components). Specifically, we will leverage the EPG and streamer service 

components in different configurations and demonstrate as well as measure their impact on service 

deployment.  

3.3.1 Involved components, their functionalities and implementations 

Component Functionality Implementation 

Service Component EPG and Streamer service components 

Shark3D dashboard service 

Multi-configuration enabled 

implementation 

Domain Orchestrator Service registration, service deployment, 

evaluator-service based service 

placement, etc. for composite services 

Main FUSION prototype 

Zone Manager FUSION Service lifecycle management 

and intra-zone orchestration: session 

slots, evaluator services, etc. 

Main FUSION prototype 

Service Resolver  Provide (optimal) endpoint towards 

either composite service or for one 

component to automatically find the 

other components with which to connect 

to. 

Basic FUSION prototype for 

evaluating basic functionality 

Advanced FUSION prototype for 

evaluating efficiency 

Data Centre Adaptor Allow adding/removing a new service 

configuration to a running instance. 

Main FUSION prototype 
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Client Simple interactive client  Simple Java client 

 

3.3.2 Means of verification 

We will validate the multi-configuration concept by implementing this capability in the main FUSION 

prototype implementation. Specifically, we will extend the Zone Manager and DCA for supporting 

this feature as well as extend the manifest specification to be able to signal which service 

components support and enable this feature for particular application services. The functional 

evaluation will be showcased by sending a request from a client for  a composite service that 

comprises components developed by Alcatel-Lucent and Spinor.Inside a single zone, the zone 

manager will flexibly combine instances of both services with available session slots. 

From a performance perspective, we will measure and compare the infrastructure capacity reduction 

that can be realized for a given demand pattern by adding new service configurations to existing 

instances, compared to an approach where for each composite service dedicated instances are 

deployed. 

3.4 Service Placement Optimisation 

Several execution zones will be set up in the testbed that vary in terms of: 

• Capacity: one large execution zone, representing a central cloud provider; several small 

execution zones with limited capacity, representing local processing capabilities in access 

networks. 

• Network location and performance: the underlying network topology and performance 

(latency, bandwidth) will be configured in the Virtual Wall environment to deliver different 

network performance characteristics to the set of end-user locations. 

• Costs: the fixed and incremental costs to instantiate service instances in an execution zone. 

Two services: Advanced EPG and Thin client 3D game will be defined in terms of the usage patterns 

(number of users, their location and service invocation times), the target performance (maximum 

latency, minimum throughput), and the total deployment budget. 

The service placement logic will identify the execution zones to run the services and the number of 

instances required in each location to meet predicted demand within the total budget. 

3.4.1 Involved components, their functionalities and implementations 

Component Functionality Implementation 

Application Component Advanced EPG 

Thin client 3D game 

Application components 

implemented in Docker 

containers. 

Orchestrator Service Placement Algorithm Plug-in to main FUSION 

orchestrator prototype 

implemented in Python. 

Zone Manager FUSION service lifecycle 

management functions to allow 

automated instance 

deployment in selected 

execution zone. 

Main FUSION prototype. 

Service Resolver Minimal implementation to 

select an available service 

Simple FUSION prototype. 
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instance. 

Client Invoke service and report on 

overall service performance. 

Dummy clients as per main 

FUSION prototype. 

 

3.4.2 Means of verification 

First of all a single service will be deployed, aiming to show that the performance targets for that 

service are met, within the execution zone capacities and the deployment budget. 

The second service will be deployed and the placement logic will attempt to optimise the location of 

the service instances, given that some execution zone capacity has been consumed by the first 

service. This may result in a sub-optimal deployment. 

Both services will be deployed at once showing that trade-offs can be made between maximal 

performance and minimal cost to allow both services to meet performance targets while keeping 

within the constraints of cost and execution zone capacity. 

By relaxing or tightening total budget for instantiation per service or minimum service performance 

targets we will show that service placement decisions can differ. 

3.5 Session Slot Service Scaling 

In this scenario, we will demonstrate the use of load information reported by services to trigger 

scaling decisions. Session slots and service holding time are proposed by the FUSION consortium as 

an abstraction of application-specific load metrics and heterogeneity of the underlying 

infrastructure, both intra-zone and inter-zone. 

The demonstrator scenario will be as follows: 

• Two services from different providers have been registered and pre-deployed on two 

different execution zones (one replica per zone). One can consider this as the outcome of 

demonstrator “Service Registration and Automatic Deployment” 

o Services: EPG (Alcatel-Lucent) and Shark 3D (Spinor) 

o Replicas running in at least two different execution zones. After all replicas have 

booted, they each report a different number of session slots and/or expected service 

request time (determined through evaluator services, or a direct mapping from the 

amount of resources allocated to the execution container)  

• As user load is generated, the number of available session slots visible to the service resolver 

fluctuates. In this step of the demonstrator, we exclude scaling (both intra-zone and by the 

orchestrator). If the number of session slots is depleted in one zone, all service requests are 

directed to the replica in the other zone. 

• We now enable scaling in a single zone. As more requests arrive, the number of instances is 

scaled up when the number of available session slots drops below a predefined threshold. 

When the number of available slots goes above a predefined threshold, some instances are 

been marked as “decommissioned”. These instances will not receive new requests, but they 

are only be shut down when the last pending request has been served. 

3.5.1 Involved components, their functionalities and implementations 

Component Functionality Implementation 

Application Component EPG service Closed-source, provided by ALU 

in a Docker container and using 
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Shark3D Rendering service the FUSION API. 

Closed-source, provided by 

Spinor in a Docker container 

and using the FUSION API. 

Zone Manager Intra-zone scaling decision Integrated with HEAT in 

OpenStack 

Zone Gateway Aggregates monitoring 

information over all service 

replicas and injects the 

information in the service 

resolution plane and to the 

orchestrator. 

VM/container running in the 

zone 

 

Zone monitoring infrastructure 

Orchestrator Implements deployment and 

scaling decisions. 

One per domain. 

Client  Dummy client, provided by ALU 

 

3.5.2 Means of verification 

A GUI will show the following information: 

• Number of session slots per service replica. This will be used to demonstrate intra-zone 

scaling, as well as the outcome of the evaluator service. 

• Aggregated number of session slots/instances per zone, as visible to the service resolver. This 

information might lag the actual information in the zone; for scalability reasons. 

3.6 Evaluator services 

An evaluator service is a service which is implemented by software vendors but then used by FUSION 

itself to score possible instantiation locations of a service. A evaluator service is closely related to a 

specific service, and is usually implemented by the same software developer as that service. For 

example, FUSION may use an evaluator service for a game service to check if a particular execution 

zone supports the GPU features required by that game service. 

Note that the main motivation for evaluator services is not to replace static manifests, but to avoid 

core FUSION components to understand all possible requirements of services. For example, while it 

would be possible to describe GPU requirements (e.g. minimal shader model version) in a manifest, 

implementing this within FUSION would make service vendors depending on implementing support 

for their requirement into FUSION, for example if new hardware is available or features must be 

tested in a different, service-specific way. Technically a evaluator service may work very well with 

configuration parameters or manifests, as long as the code interpreting them are not hardwired in 

the core of FUSION. 

3.6.1 Involved components, their functionalities and implementations 

As part of the demonstrator, we will implement a evaluator service for the Shark 3D based 3d service 

component, which requires a GPU. As described in section 2.3.3, a likely option is to implement the 

evaluator service for a Shark 3D based service component also based on Shark 3D.  

Component Functionality Implementation 

Application Component EPG evaluator service Closed-source, provided by ALU 

in a Docker container and using 
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Shark3D rendering evaluator 

service 

the FUSION API. 

Closed-source, provided by 

Spinor in a Docker container 

and using the FUSION API. 

Zone Manager Intra-zone deployment decision  Integrated with HEAT in 

OpenStack 

Zone Gateway Aggregates evaluator results  VM/container running in the 

zone 

 

Zone monitoring infrastructure 

Orchestrator Implements deployment 

decisions.  

One per domain. 

Client  Dummy client, provided by ALU 

 

3.6.2 Means of verification 

The two means of verification are: 

• FUSION must deploy a Shark 3D based service only on servers which have the requirements 

checked by the evaluator services for Shark 3D, which mainly means checking for the 

precence of a GPU. Otherwise FUSION might try to install a Shark 3D based service on a 

server which does not support running that service successfully, resulting in an run-time 

error, which must not happen. 

• The evaluator service provides FUSION information about preferred deployment options, for 

example that one server is better suited to run a particular service (e.g., a Shark 3D based 

service) than another because of better GPU features, resource characteristics or overall 

better runtime behavior. While the service could run on both servers, FUSION needs the help 

of the evaluator service for making a better decision. Whether this scenario can be verified 

by the demonstrator is not clear yet since it depends on the possibility of having multiple 

different GPU-powered servers available in one of the testbed, which currently is not the 

case. 

3.7 Heterogeneous cloud environment 

We will demonstrate the impact of heterogeneous environments and demonstrate how various 

FUSION layers take this into account in a few dedicated test scenarios and setups. Specifically, we will 

demonstrate the use and effectiveness of service metrics such as session slots as well as evaluator 

services for efficiently deploying services with particular requirements on hardware infrastructures 

with particular capabilities. 

• We will demonstrate how particular services can exploit particular hardware capabilities to 

maximize the number of available session slots per type of environment; 

• We will demonstrate how evaluator services can be intelligently deployed in particular hardware 

and software environments for efficiently selecting the optimal environment for a particular 

service, without having to deploy instances of all evaluator services in all possible environments; 

• We will demonstrate the impact of various platform optimizations such as lightweight 

virtualization, NUMA-pinning and real-time guarantees for providing better QoS towards the 

FUSION applications; 
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• We will demonstrate how the underlying cloud platform can leverage these FUSION metrics for 

optimizing how particular services can be optimally deployed on the underlying infrastructure 

(improving the overall density and stability of deployed services), and how this (in its turn) is 

reflected in a higher efficiency score due to better overall efficiency and predictability, provided 

by the underlying optimizing platform. 

3.7.1 Involved components, their functionalities and implementations 

Component Functionality Implementation 

Service Component EPG and streamer service components 

Various evaluator services 

Prototype service components 

DCA Platform-aware physical DCA prototype, 

optimizing the deployment of services on 

particular physical environments 

Non-optimized DCA implementation, 

which will be used as a baseline 

Prototype implementation of a 

platform-aware DCA, provided 

by ALU 

Zone Manager Efficient (evaluator) service placement 

based on evaluator service feedback 

Agnostic zone manager, assuming a 

homogeneous cloud data centre 

Main FUSION prototype  

Orchestrator Evaluator-service based placement  

Agnostic orchestrator, assuming a 

homogeneous distributed cloud 

Main FUSION prototype  

Client Simple interactive client Simple client 

 

3.7.2 Means of verification 

The overall goal of this scenario is to evaluate how effective the various FUSION concepts and layers 

can handle service, platform and infrastructure heterogeneity. This will be done by measuring 

different types of metrics of both the applications and platform. Specifically, we will create a GUI, 

depicting live metrics such as: 

• Application performance metrics, such as number of supported session slots; 

• Application QoS metrics, such as average and worst-case application latency; 

• Infrastructure performance/efficiency metrics, such as power efficiency; 

• Platform QoS metrics, such as scheduling latencies; 

We will verify this scenario by creating two main FUSION setups, namely a non-optimized platform-

agnostic FUSION domain and zone, where all execution zones as considered to be similar to each 

other with respect to resource capabilities, and a heterogeneous-aware FUSION domain and zone, 

where evaluator services, session slots and lower level optimizations are combined to drastically 

improve overall efficiency and QoS. 

We will deploy an EPG service each of the setups, connect an application client to each of the 

services, and evaluate the overall QoE of the application in terms of responsiveness, quality and 

overall smoothness.  
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4. FIRST PROTOTYPE DEPLOYMENT 

4.1 Virtual Wall Deployment Environment 

To evaluate the FUSION components and architectural design, we are building an integrated 

prototype using the jFed [2] suite for testbed federation. JFed connects testbeds located on different 

geographical locations such as the iMinds Virtual Wall, PlanetLab Europe and Utah Emulab. 

The deployment process goes as follows: first a user creates the network topology using either a 

configuration file or a web-based GUI. Next, the experimenter can operate each node through 

remote login such as ssh. 

In the current stage, the FUSION integrated prototype is being build using jFED on a single testbed, 

namely the Virtual Wall [1] testbed. The iLab.t Virtual Wall facility is a large scale generic test 

environment for advanced network, distributed software and service emulation and evaluation, and 

supports scalability research.  

Using the Virtual Wall we are able to quickly emulate any network topology of choice 

interconnecting a number of execution zones. Experiment deployment is scripted using a so-called 

Rspec file. First, the user defines the network topology in this Rspec, using either a GUI or his own 

script. 

 

 

Then, the user specifies in the experiment script the software to be installed on each node: zone 

gateway, orchestrator, service resolver, etc. Once the nodes, edges and their respective 

characteristics (node operating system, edge bandwidth, edge latency, …) are set, the experimenter 

starts the deployment process which is completed in a matter of minutes. Scripts are available to 

provision nodes as zone gateway, orchestrator, service resolver or client.  

To facilitate the deployment process and minimize the required manual intervention, we developed 

a configuration generator similar to the one described in 4.2 (REFERENCE). First, we generate a 

network topology using a network generator. Next, we assign FUSION functionality to each node; 

execution zones start up with the required functionality to process requests, each service resolver 
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builds its own resolution and forwarding table and waits for incoming requests while client nodes 

contain request generators. Last, we generate a configuration file containing the above mentioned 

information and use this to deploy our setup on the jFed testbed. 

Currently, we have a running prototype for a single domain, comprising: 

• 1 orchestrator 

• 1 service resolver 

• 5 execution zones (4 emulations, 1 zone running OpenStack) 

Working use case scenarios are: 

• Registration and deployment of services 

• User queries, following a Poisson distribution for the interarrival time between requests 

• Instance availability update from execution zones to the client 

4.1.1 Next steps 

The Virtual Wall uses virtualization to emulate a large network but it is only one testbed on one 

location. As a result, FUSION can not use location-aware algorithms when running on the Virtual Wall 

alone. To overcome these limitations we use the jFed Invalid source specified. testbed, a suite for 

testbed federation. Similar to the Virtual Wall, jFed creates topologies using a configuration file 

containing the network topology and optional functionality to be deployed on nodes. Nodes can now 

be deployed over multiple testbeds located in different geographical regions, each running a 

different configuration. 

4.2 Orange Datacenter Deployment Environment 

4.2.1 Current setting 

One possible deployment scenario for FUSION that is interesting from the point of view of network 

operator assumes the use of mini-data centres integrated with the network infrastructure of the 

operator in selected points-of-presence. Orange is considering this kind of integration as one of the 

strategic options for migrating its infrastructure under the heading of Next-Generation PoP (NGPoP). 

The main underlying idea for NGPoP in case of Orange is to organise it relatively close to clients 

around collocated access/aggregation infrastructure for both wired and wireless access technologies. 

Within FUSION experimentation work, Orange is planning to mimic a simple NGPoP setting using its 

laboratory infrastructure as depicted schematically in Figure 7. 
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Figure 7  NGPoP-based FUSION deployment. 

The OpenStack data center is currently emulated using Cisco platform running VMware. The role of 

servers managed by OpenStack Nova perform virtual machines enabled by VMware that run run 

KVM. These machines are used to host target VMs that perform as applications managed by FUSION. 

Although this “nested virtualization” setting may pose performance restrictions for certain types of 

experiments, nevertheless it can well support functional tests including many experiments with 

service resolution and orchestration. For more advanced test in the future, migration to bare metal 

OpenStack is envisioned. 

Current experiments covered integrated service routing and orchestration assuming no specific zone 

manager capabilities to be available. Therefore direct access to OpenStack IaaS was used based on 

open REST API provided by OpenStack (http://developer.openstack.org/apiref). Current 

implementation of our integrated service router/orchestrator ) is based on Java using SDK Apache 

jclouds. The latter provides access to the functions of OpenStack API. 

4.2.2 Next steps 

Next steps include integration of network awareness into the resolution component which will 

require collection of respective data from network infrastructure. The latter is based on Vyatta 

routers and we envision SNMP-based access to selected measurements and CLI-based or equivalent 

access to forwarding information. Whether or not relevant information will be presented to 

resolution functions in ALTO format is a matter of future decisions, although we are aware of 

potential difficulties in implementing ALTO server and possibly limited impact such implementation 

would have externally. Another step planned is the integration of our infrastructure with Virtual Wall 

to enable common experiments with services being developed by other partners.  

4.3 First prototypes of FUSION-enabled composite services 

As a first prototype, a combination of the ALUB Java output client, based on the RFB protocol in 

combination with the Spinor Shark 3D engine were launched on different PCs and connected to each 

other. The main purpose was to demonstrate the interoperability between the two services building 

a composite service and the possibility to create new session slots inside the Shark 3D engine. By 

connecting the client to the Shark 3D software, a new viewer context was instantiated and the 

rendered output for this context was captured and transferred to the client using the RFB. In this 

sample, the context mapped to the same world as other exiting contexts, but it is just a matter of 

OpenStack DC (emulated on Cisco DC/VMware)

Execution zone B (Orange NGPoP scenario)
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manager, orchestrator
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configuration, which parts should be instantiated on connection and therefore a whole new scene 

for each connection could be instantiated, too, which could then be enhanced to fully functional 

session slots. 

4.3.1 Next steps 

Next steps are using video compression and input channel. 

4.4 Host environment deployment 

For implementing and testing the various FUSION functionalities, APIs as well as initial demonstrator 

services, we developed and implemented initial prototypes of a FUSION domain orchestrator, a zone 

manager, and a host based data centre adaptor layer leveraging Docker and KVM as virtualization and 

isolation mechanisms. 

Below a summary of the various actions we did:  

• We first implemented a skeleton implementation of these core FUSION layers, focussing on 

implementing and validating the APIs detailed in Deliverable D3.2.  

• Next we expanded the skeleton implementation into a working prototype to validate the overall 

FUSION functionality for registering, deploying and managing FUSION application services on top 

of a Docker based host environment. 

• We embedded the various Python-based prototype implementations in Docker containers (as 

well as VMs) and deployed them on a Dockerized implementation of the host-based DCA 

prototype implementation. In other words, we used the DCA layer, which itself was wrapped in a 

container, to manage and deploy a FUSION zone manager, domain orchestrator and service 

resolver on top. This is illustrated in Figure 8. 

• We also integrated several demonstrator service component prototypes, such as an EPG, 

streamer and virtual desktop component. For this, we embedded them in a Docker container (as 

well as VM), developed the necessary wrapper scripts for exchanging session slot and service 

configuration data with a FUSION zone manager, and created JSON-based manifests for 

providing initial service manifest descriptions. The latter were used for registering and deploying 

these services on the prototype. 

• All these components subsequently were integrated and deployed on the virtual wall 

infrastructure provided by iMinds. This includes integration with their service scaling prototype 

based on an OpenStack HEAT environment. 

 

Figure 8– Deployment of prototype components on top of a Docker-based DCA environment 

Using this initial prototype deployment on a Docker host environment, we tested a number of key 

FUSION scenarios, some of which will be described and evaluated in more detail in Section 5.1: 



D5.2 Final use case design, report on prototype deployment and initial 

evaluation results 

Page 41 of 50

 

Copyright © FUSION Consortium, 2014 

• FUSION core service deployment (i.e., domain, zone, service resolver) on the simple DCA 

implementation; 

• Application service registration in a FUSION domain; 

• Application service deployment, involving all components: domain orchestrator, zone manager, 

evaluator service, DCA, Docker daemon, service resolver, etc.; 

• Integration of an evaluator service during service deployment; 

• Automatically connect and interact with services deployed on the prototype using the service 

name and service resolver; 

• Validating the functionality of the session slots as multiple clients connect and disconnect; 

• Validating the aggregation capability of available session slots coming from multiple active 

instances of the same service type; 

• Validating the multi-service configuration capabilities of the various application services for 

sharing service component instances across multiple services (composite or not);  

5. FIRST PROTOTYPE EVALUATION 

5.1 Service Registration and Automatic Deployment 

In WP3, we provided already an initial design and functional implementation of the key FUSION 

orchestration layers, implementing both the REST APIs as well as their overall function. In this 

section, we describe how we validated and evaluated the current FUSION prototype and their end-

to-end interactions.  

Specifically, our initial evaluation of the FUSION prototype involves the registration and subsequent 

deployment of one or more FUSION services, as this incorporates almost all key FUSION components, 

as is depicted in Figure 9: the orchestration domain, zone manager, DC adaptor (as well as the DC 

itself), the evaluator services, session slots and monitoring, zone gateway, service resolver, and 

obviously the application services themselves. After a service is deployed by FUSION, user client can 

to connect to an available instance of the deployed service, only by providing the corresponding 

service name. 

We first elaborate on the functional aspects, followed by an initial performance evaluation for a 

number of scenarios.  
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Figure 9 – Service registration and deployment scenario 

5.1.1 Functional evaluation 

We first implemented the service registration function, allowing a service provider to register a new 

service in a FUSION domain by providing a service manifest when registering that service to a specific 

FUSION domain orchestrator. This manifest is stored in the domain after which the service can be 

deployed. 

To validate our initial end-to-end implementation of the service deployment function, we currently 

manually trigger the FUSION domain orchestrator to deploy a number of session slots of a registered 

service, which will trigger the sequence of steps described below in our working prototype: 

1. We first trigger the domain orchestrator to start deploying a new instance in the domain by 

triggering the corresponding REST method (e.g., PUT /1.0/services/epg1.bell-labs.be/state 

for the EPG service); 

 

2. The domain orchestrator implementation then first makes a preselection of feasible 

execution zones; in the current implementation of the preselection module, all registered 

zones are considered feasible; in a later prototype, we will integrate with service 

requirements, load and network monitoring data; 

 

3. For each of the selected zones, the domain prototype will first check whether that service 

was already previously registered in that zone; if not, the domain orchestrator first registers 

the service into the zone; 

 

4. Next, for all selected zones, the domain orchestrator implementation checks whether there 

is still a valid offer available for deploying that service in that zone. In such case, the cached 

offer will be reused and the zone manager will not be contacted. Otherwise, the orchestrator  

requests the zone manager to prepare a new offer for that specific service deployment 

request, passing along the necessary deployment and instantiation parameters.  

 

5. The zone manager component in our prototype will now prepare a new offer. For services 

that have specified an evaluator service, the zone manager first looks up the endpoint(s) for 

various instances of that evaluator service, or simply leverages a generic evaluator service. In 
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case no evaluator instance is running yet, the current implementation returns an empty offer 

to the domain orchestrator. Later implementations could automatically deploy the evaluator 

service in the zone, assuming there is enough time available. Indeed, in the current 

implementation, the domain orchestrator can specify a deadline within which all offers need 

to be provided by the zone manager. Depending on whether the deployment was triggered 

by an on-demand or pre deployment scenario, there may be more or less time available for 

evaluation and deployment. Note that using light-weight containers facilitate fast 

deployments, including of evaluator services (see Section 5.1.2). 

 

6. The zone manager prototype then triggers each evaluator service instance to make a proper 

service-specific evaluation and return a corresponding score. 

 

7. All scores are collected and the best is chosen by the zone manager. For that score and 

evaluation request, a new offer is created and added to the zone manager data base for 

future reference. The corresponding offer is then returned to the domain orchestrator. 

 

8. Based on all offers that were received (in time), the domain orchestrator makes a final 

selection and chooses the best zone(s). In the current implementation, only one zone is 

selected; however, in future implementations, we envision that multiple zones may be 

selected, each for deploying a subset of new session slots, especially for large-scale 

deployments, as some zones may only be able to deploy a portion of all slots at some price 

point or efficiency score. 

 

9. The domain orchestrator now triggers each of the execution zones (in parallel) for deploying 

a number of session slots according to a specific offer. 

 

10. The zone manager in each zone now will start deploying one or more instances. For this, it 

will trigger the DCA to deploy new instances on the underlying DC infrastructure. 

 

11. In our current DCA implementation, this means either a Docker instance or KVM instances 

will be deployed on the DCA host, based on the manifest data, DCA capabilities as well as 

deployment parameters. The corresponding instantiation parameters are stored in the ETCD 

key/value store and passed to the application service instance. 

 

12. While the container or VM is booting, the DCA returns a status code to the zone manager, 

which in its turn returns an appropriate status code to the orchestrator, all the way back to 

us (as we manually triggered service deployment). 

 

13. In the mean time, when the application service is up and running and the new session slots 

become available, the service reports the newly available slots to the zone manager, which 

will subsequently inject them into the service resolution plane. Depending on the 

virtualization technology used, this may take seconds to minutes. 

 

14. When the service resolver have been updated with these new slots (which could come from 

an entirely new service type), the user or client (or another FUSION service) can make a 

service request to the FUSION service resolution plane, which may return the endpoint of 

one of the newly created instances, after which the client can directly connect to the service 

of interest. 

 

We already implemented the entire process as described above as such and thus allows already an 

initial full end-to-end deployment of the various already available FUSION services (e.g., EPG, 
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streamer, evaluator, etc.), using most of the key FUSION functional blocks, which are all already 

communicating and working together already. 

Note that if at any point in time some step fails, a corresponding error message is returned to the 

previous component, which subsequently either takes correcting measures or returns with an error 

message. Note also that we implemented a standard user/role based authentication mechanism in 

all prototype components so that only registered and authenticated users or software components 

can trigger particular REST API functions, or only can see a limited view of the system state (e.g., a 

service provider can only see its own services as well as all other publicly visible services from other 

providers). 

In Table 1, a summary is provided of the status of various tests we have performed already on the 

prototype. As can be noticed, we mainly focused so far on the creation and runtime management. 

The cleanup as well as more automated functionality will be for the third year of this project. 

Table 1 – Functional status of working prototype 

Status Test Comments 

PASS Register users 
Each FUSION component can successfully register new users and 

assign roles. 

PASS Register multiple zones 
We can register one or more zones to a FUSION domain 

orchestrator. 

PASS Register services 
We can dynamically register services using simple JSON 

manifests to a FUSION domain 

FAIL Unregistering objects 

Full cleanup of state, including termination etc. has not been 

fully implemented yet. For example, to unregister a zone, all 

running instances of all services of that zone first need to be 

removed 

PASS 
Deployment of atomic 

services 

We can already deploy atomic services manually (as described 

above) 

PASS 
Evaluator-based 

placement 

Services can already specify their dependency on external 

evaluator services for making a zone placement decision. In the 

current implementation, it is assumed that such evaluator 

services already have been predeployed. 

FAIL 
Deployment of 

composite services 

We are currently working on implementing deployment of 

composite services in a zone. 

FAIL Automatic scaling Automatic scaling and deployment 

PASS Running Docker services 

We support running services wrapped as Docker containers. In 

fact, the FUSION orchestration services themselves are also 

Docker containers. 

PASS Running VM services We also support simple KVM-based services for running services. 

PASS 
Instantiation 

parameters 

We support providing and passing service deployment and 

instantiation parameters, both to the evaluator services as well 

as providing them to the instances, which can use those for 

customizing their instantiation. 
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PASS Session slots 

Services can forward their active session slot information to the 

zone manager, which will inject it to the registered service 

resolver. 

PASS Service requests 
We can successfully connect to particular services using only the 

service name, and interact with the active session (e.g. EPG). 

FAIL Session slot zone scaling 
We did not integrate the session-slot based scaling in this 

working prototype yet. 

PASS 
Adding new service 

configurations 

We can already add new service configurations to existing 

service component instances for hosting multiple services and 

their corresponding slots. 

FAIL 
Removing service 

configurations 

We did not fully implement the removal of service configurations 

in service instances yet. 

 

5.1.2 Performance evaluation 

In this section, we discuss initial performance results of deploying a FUSION application service (e.g., 

evaluator or EPG service) in our demonstrator setup. Note that the absolute timings should be 

regarded as a lower bound, as in a more complex full-blown (distributed) FUSION implementation, 

these timings obviously could vary significantly. 

First, in Figure 10, we show a break-down of the total time it takes to trigger the deployment of a 

new service in our prototype. Note that for these timings, the implementation follows the steps 

described earlier in Section 5.1.1, but do NOT include the time for the instance to be fully 

instantiated and available for incoming requests (see further). Also, for these tests, all prototype 

components (i.e., domain, zone, DCA, etc.) were deployed locally on the same host as Docker 

containers. Next year, we will also evaluate and compare with distributed deployments on the vWall.  

 

Figure 10 – Break-down of timing of deploying a new service in a domain 

We demonstrate the deployment time for four service deployment scenarios: 

• Deploying an evaluator service; 

• Deploying a FUSION application service (e.g., EPG or streamer service) as a new Docker instance; 

• Deploying a FUSION application service (e.g., alternative streamer service configuration) by 

adding a new service configuration to an existing Docker EPG service instance; 
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• Deploying a FUSION application service (e.g., EPG service) as a new QEMU/KVM instance; 

From this graph, a few observations can be made: 

• A first observation is that in the current implementation, deploying a new instance is very fast, 

taking less than half a second, even though there are already quite a few components and steps 

involved for implementing this deployment. Note that in this evaluation, we assume the 

VM/container images of the services are already readily available on the target host machine. If 

this is not the case, then the overall “Deploy Zone” time will increase significantly. Also, the 

current service evaluation step currently involves triggering a simple evaluator service that 

currently immediately returns a score without doing on-the-fly evaluations (which is not 

preferred anyway). In real deployments, we expect this evaluation to easily take up to a few 

seconds, depending on the amount of time the domain orchestrator allowed for making 

evaluations. 

• Second, adding a new service configuration to an existing instance significantly reduces the total 

time for deploying a new instance. As in this case one can also assume that there will be no 

provisioning delay, this shows that being able to optimally reuse existing components and 

instances can significantly speed up domain-based deployment. 

• Third, the KVM-based instantiation is faster than Docker-based instantiation. Note that de 

deployment time here does not include the time for the new instance to be fully operational, but 

only the time for the environment to be created. In case of Docker, it takes a fraction of a second 

for the container environment to be created. However, this delay could easily be mitigated in 

case the container creation would also be done asynchronously as with the VM creation.  

As mentioned earlier, the timings above do not include the delay between a new service being 

instantiated and the service instance being fully operational, reporting available session slots to the 

zone manager. This delay is depicted in Figure 11, where we show the total instantiation time in case 

of three scenarios: 

• Instantiating a new FUSION service in a Docker container; 

• Instantiating a new FUSION service by adding a new service configuration to an existing FUSION 

instance running in a Docker container; 

• Instantiation a new FUSION service in a KVM VM. 

 

Figure 11 – Break-down of time needed for instantiating a new instance in a zone/DCA 

The blue bar shows the time for creating the overall environment on the host. As mentioned before, 

we assume here also that the service container/VM images are already available on the target host 

machine. The red bar shows the time it takes for the application in the VM or container to start and 
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report available session slots back to the Zone Manager. In case of KVM, this also includes the time 

to boot the VM. Obviously, the minimal time needed for an application to be fully operational can be 

very application-specific. However, for FUSION services, a design goal should be to keep this start-up 

delay as short as possible, especially for services that need to be able to scale out very rapidly.  

Overall, a few conclusions can be drawn from these results: 

• Firstly, booting a VM can quickly take a number of seconds (i.e., 10 seconds on this 

environment), and although this can be reduced by means of VM snapshots etc., there will 

always be a penalty on real cloud environments; 

• Secondly, creating a new container and starting an application in a container instance can easily 

take less than one second, which can be especially advanteous in case of FUSION services; 

• Thirdly, Simply adding a new service configuration to an existing instance reduces this delay even 

further, having new session slots available in only a fraction of a second. Note also that in this 

scenario, there will be no provisioning delay, and the start-up delay typically will only involve 

some internal configuration that needs to be done, rather than allocating all application 

resources and data structures from scratch (i.e., a hot boot scenario). 

In summary, in this section, we already provided some initial performance results of our FUSION 

prototype for deploying FUSION-enabled application services wrapped in both Docker and KVM. In 

the final year of the project, we will expand these results by including more complex scenarios and 

evaluate these on more heterogeneous and distributed environments. 

5.2 Service resolution 

As has been mentioned in section 4.2, current evaluation experiments covered integrated service 

routing and orchestration. Actually, no specific zone manager capabilities have been implemented 

for this purpose so direct access to OpenStack IaaS capabilities based on open REST API was used. 

The orchestrated service adopted is a simple WorldPress. The overall structure of this application 

and its relation to the simple orchestrator/service resolver is depicted schematically in Figure 7. The 

choice of WorldPress was motivated by our desire to start fast prototyping with selected 

functionalities like composite services and selected orchestration patterns. Of course, in the near 

future this application is planned to be substituted by services being deployed by other partners of 

the FUSION consortium. As can be seen, the application is built using the chaining pattern as of 

deliverable D4.2 (see section 2 therein) to allow for multiple components and load balancing. Related 

to this, but not shown in the figure is the adoption of shall scripting using CloudIinit tool in support of 

this chaining pattern. 

We note that the decision for integrated resolution/orchestration to a great extent relates to the 

concept of NGPoP where we envision that FUSION components located in a given NGPoP will 

typically serve its own customers and optionally external customers. The validity of this assumption 

is of course for further studies, however, we believe the results achievable even under this specific 

scenario can still be valuable. 

Next main steps that are planned are two-fold. First, there are plans to integrate our NGPoP demo 

with VirtualWall and also integrate into our NGPoP FUSION demo selected services currently being 

developed by other FUSION partners. EPG is a candidate application that is being considered for this 

role. The other dimension relates to testing the potential of selected concepts that are researched by 

FUSION (related mainly to orchestration and service resolution) to allow customers to build network 

of virtual WebRTC media-relays. 
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5.3 Load-aware service scaling and resolution 

Both the orchestrator and the service resolver operate on the notion of session slots, an abstract 

load metric for long-lived sessions that plays a central role in FUSION. Figure 12 illustrates the 

different components and interactions in this integrated prototype. Service requests are resolved to 

the best available instance. In the current prototype, the request is resolved to the locator of the 

instance that has the lowest latency to the requesting user. Each instance reports its current slot 

count to the zone manager, who injects an aggregate report in the service resolution plane. Scaling 

mechanisms are demonstrated, both intra-zone and inter-zone. 

 

Figure 12 – Session-slot based scaling and resolution 

5.3.1 Functional Evaluation 

To demonstrate the interaction of slot-based scaling, we take a set-up where two services (EPG and 

Shark3D) are being registered with the domain orchestrator. These services have been extended by 

implementing the FUSION API needed to report session slots. Furthermore, there are two zones 

where services can be deployed. Initially, a single instance of the EPG service is deployed in zone A, 

and a single instance of the Shark3D service is deployed in zone B. 

We assume a single network location from which service requests originate (e.g. a subnet). This 

originating point is closer to zone A in terms of network latency. If service instances are available in 

both zones, this essentially means that the service resolver will always resolve to the service 

endpoint in zone A and only direct users to zone B if the session slots are depleted.  

The following sequence of interactions will be demonstrated: 

1) Service requests are generated at regular intervals for the EPG service. The number of session 

slots reported by the single EPG instance decreases according to the number of users connected. 
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2) When the number of available session slots drops below a predefined threshold, the zone 

manager of zone A deploys additional instances. 

3) When too many session slots are available, the zone manager will shut down a number of 

instances to reduce deployment costs. 

4) If the maximum number of available session slots is reached, the orchestrator deploys the EPG 

service in zone B. As long as all session slots of the EPG service in zone A are depleted, service 

requests are resolved to zone B.  

5.3.2 Performance Evaluation of current implementation 

The current prototype is deployed on the via the jFED tool on the Virtual Wall. Each zone is deployed 

on a single machine (Dual INTEL XEON E5645, 24 GB RAM, 250 GB), that runs a complete OpenStack 

Icehouse version. The OpenStack implementation has been modified and extended with FUSION APIs 

to support session-slot based scaling. 

Figure 11 shows the demonstrator GUI. The GUI shows the running services and offers the possibility 

to generate client requests The number of session slots is shown per instance, indicated by white 

squares. If a session slot is occupied, the white square will turn red.  

 

Figure 13 – Demonstrator GUI for slot-based scaling and resolution 

The graph on the right hand side of the GUI shows the cost of a client connection. The service 

resolver uses the network latency between clients and zones for request resolution. In this case, we 

use the network latency as cost metric. The image shows that the last 5 clients that connected each 

had a cost of 50 ms. When a client connects to an instance in the second zone, which has a cost 

metric of 70 ms,  you will see a spike at x=6 to y=70.  

The services in the current setup are lightweight ncat echo servers running in VMs. These will be 

replaced by VM images of the EPG and Shark3D software. 

The downside to this approach is that scaling VMs is remarkably slower then scaling linux containers 

for example.  

5.3.3 Future plans 

On top of that, several components (custom scripts, Heat and Ceilometer evaluators, …) have to 

work together, which also causes a delay. Therefore, switching to Docker containers and developing 

custom scaling software appears to be far more efficient. 
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Scaling results in multiple endpoints for a given service, which guarantees the availability of the 

service. Another advantage is that the service resolution algorithms can use a number of parameters 

such as session slots, response time, denial of service numbers, … for each of these endpoints to 

determine which one to return when a client request is received. Which exact parameters are to be 

used for these algorithms is up for discussion. 

6. REFERENCES 

[FFM14] FFmpeg, http://www.ffmpeg.org/, 2014. 

[FV09] Vandeputte, F., Vampire parallelization toolchain, IWT Vampire project, Deliverable 

D.B.4.3, 2009. 

[RT10] Richardson, T., The RFB Protocol, http://www.realvnc.com/docs/rfbproto.pdf, 2010. 

[SHARK3D] Shark 3D, http://www.spinor.com/goto/shark3d_as_service.html, 2014 

[X13] X264, http://www.videolan.org/developers/x264.html, 2013. 

[YUV13] YUV4MPEG2 file format, http://wiki.multimedia.cx/index.php?title=YUV4MPEG2, 2013. 


