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Abstract This deliverable first describes the initial requirements with respect to the use cases that 

we will use for evaluating FUSION, followed by a description and initial modelling of 

these use cases, as well as the testbeds we will use for either the test scenarios or the 

demonstrators. We also provide an initial overview of specific test scenarios we plan to 

build for evaluating subcomponents of the FUSION architecture and which can 

subsequently serve as input towards the demonstrator. Finally, the design of an initial 

demonstrator setup is described, which focuses on building an initial environment and 

bringing together initial software components representing various use cases. 
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GLOSSARY OF ACRONYMS 

4G Fourth generation of mobile phone mobile communication technology standards 

API Application Program Interface 

BGP Border Gateway Protocol 

BW Bandwidth 

C++ Object Oriented Programming Language  

CPU Central Processing Unit 

Ctl Control 

DC Data Center 

DNS Domain Name System 

DRAM Dynamic Random Access Memory 

EC2 Amazon Elastic Compute Cloud  

EPG Electronic Program Guide 

EZ FUSION Execution Zone 

FUSION Future Service Oriented Networks 

GB Gigabytes 

GPS Global Positioning System 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HDD Hard Disk Drive 

HTTP HyperText Transport Protocol 

IP Internet Protocol 

ISP Internet Service Provider 

MOSCOW MUST, SHOULD, COULD, WON'T 

MPLS Multi Protocol Label Switching 

NFS Network File System 

PaaS Platform as a Service 

PoC Proof of Concept 

QoS Quality of Service 

REST Representational state transfer 

RFB Remote Frame Buffer 

RGBA32 Red Green Blue Alpha 32 bit color space representation 

RPC Remote Procedure Call 

Rsp Response 

RTP Real-time Transport Protocol 

RTSP Real-time Streaming Protocol 

RTT Round-Trip Time 

SMART  Specific, measurable, attainable, relevant and time-bound 

SSD Solid State Drive 

SSH Secure Shell 
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Tb/s Terrabit per Second 

TOSCA OASIS Topology and Orchestration Specification for Cloud Applications 

UI User Interface 

VLAN Virtual Local Area Network 

VM Virtual Machine 

VNC Virtual Network Computing 

VoD Video on Demand 

VPN Virtual Private Network 

WAN Wide Area Network 

Wifi WLAN products based on the IEEE 802.11 standards 

WLAN Wireless local area network 

XML Extensible Markup Language 

YUV4MPEG2 Uncompressed frames of YCbCr video formatted as YCbCr 4:2:0 
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EXECUTIVE SUMMARY 

This document is a public deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 

project. This deliverable focuses on the use case requirements, use case modelling as well as initial 

test cases and initial demonstrator design, which will be developed within the scope of the project 

for evaluating the FUSION architecture.  

The scope of this deliverable is twofold. First, it captures the functional and non-functional 

requirements of the range of use cases we envision to be deployed with the FUSION architecture. 

Second, it describes our initial plans for evaluating several key aspects of the FUSION architecture, as 

well as our plans and methodology for building an initial demonstrator. 

In FUSION, we target demanding interactive services that need to be deployed, managed and 

accessed in a flexible manner. Due to the low-latency low-jitter interaction between the client 

application and service either for making a service request or for interacting with the service, the 

location and distribution of these services across a distributed set of heterogeneous data centres is 

of key importance.  

This deliverable first describes the key functional and non-functional requirements of these use cases 

and services with respect to the FUSION architecture. Then we discuss a selected number of these 

use cases in more detail, followed by an overview of what key FUSION aspects each of these use case 

is high-lighting. 

The second part of this deliverable then discusses the test environments and test scenarios that will 

be used in the second year of the project for evaluating the functionality of FUSION with respect to 

the selected use cases. We first describe the initial set of testbeds on which the FUSION 

demonstrators or specific test scenarios will be deployed. Then we describe an initial list of specific 

test cases we want to evaluate during the project.  

The final part of the deliverable describes an initial demonstrator design. For building the 

demonstrators, we have decided to adopt an agile design and development approach. This enables 

us to start evaluating several key functions of the FUSION architecture early on and provide 

continuous feedback regarding bottlenecks during the design and development of the architecture 

and demonstrators. It also allows us to start aligning interfaces and start integrating key functions as 

soon as possible. As the FUSION architecture comprises both an orchestration, networking, 

execution and service layer, we believe this approach will result in an efficient and scalable design.  
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1. SCOPE OF THIS DELIVERABLE 

This deliverable focuses on describing the key use case requirements, modelling a selected amount 

of use cases as well as describing an initial set of test cases as well as an initial demonstrator design, 

which we will develop within the scope of the project for evaluating the FUSION architecture. 

We first discuss the key identified requirements related to the type of services and use cases we 

want to support with the FUSION architecture. These requirements relate to the demanding and 

interactive nature of these use cases as well as the inherent dynamicity and flexibility regarding 

deployment and service selection. 

The use cases have been chosen based on the list of functional and non-functional requirements 

each of these use cases exhibit and the relevance to be used as primary candidates for deployment 

and exploitation in case of a real FUSION deployment.   

In the second part of this deliverable, we then focus on the initial test environments  we have 

selected for evaluating several aspects of the FUSION architecture and for building the 

demonstrators. We also already provided an initial design and methodology for building a FUSION 

demonstrator, using an agile development process, starting with a very simple demonstrator, which 

will then be further expanded for building the final integrated demonstrator. 

In summary, this deliverable captures the key requirements as well as key use cases we identified in 

the first year of the project, as well as an initial design and methodology for evaluating the 

architecture and implementation of all key FUSION layers, each of which will be worked out in more 

detail in the second year of the project. 
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2. USE CASE REQUIREMENTS 

In this section, we provide an overview of the key requirements of a selected number of use cases 

we want to evaluate with the FUSION architecture, which has been described in deliverable D2.1 and 

which has been worked out in more detail in deliverables D3.1 and D4.1. We will exploit these use 

cases for evaluating and high-lighting the core values of the FUSION architecture with respect to 

these key features.   

2.1 Service interaction and longevity 

In FUSION, we are targeting different types of demanding services, ranging from short-lived request-

response type of services for which a response is expected with very low delay, towards highly 

interactive streaming services, which typically consist of long-lived sessions for which the initial setup 

and response time is not critical, but for which the operational response time needs to be very fast.  

2.1.1 Request-response services 

In case of request-response services, the client application making a service request is expecting a 

fast response. As a result, these sessions are typically short-lived, where subsequent service requests 

result in new FUSION sessions for which FUSION could select different service instances based on 

availability or networking characteristics. An example service we will work out in detail is an image 

tagging service, where the client application provides an image, and expects an augmented image or 

metadata information as fast as possible. In this case, FUSION orchestration needs to make sure that 

there are enough service instances available up-front across an orchestration domain to handle all 

incoming requests. The FUSION routing domain on the other hand needs to quickly and efficiently 

route all requests to appropriate instances based on various metrics.  

2.1.2 Streaming services 

In case of regular streaming services, a client application or FUSION service connects to such 

streaming service and the selected service instance will stream the content (e.g., the video content) 

to the connected application for the duration of the session. In this case, it is not always so important 

to select and connect to an instance as fast as possible compared to selecting an optimal instance. 

Due to the lack of interactivity, the round-trip time between the streaming service and the 

requesting client application is also less important. Instead, the overall network bandwidth is likely to 

be more important. Consequently, the FUSION routing should mainly take this aspect into account. 

The FUSION orchestration on the other hand needs to make sure that enough streaming service 

instances are deployed in the appropriate locations to reduce the streaming bandwidth in the 

network. For the FUSION use cases and demonstrator, these streaming services will mainly be used 

as helper services in more complex service graphs for providing input streams towards for example 

an interactive Electronic Programming Guide (EPG) service. 

2.1.3 Interactive streaming services 

Interactive streaming services are services with typically long-lived sessions during which the client 

application can interact in real-time with such a service. The service itself is streaming dynamic 

content (e.g., a video stream, game state updates, etc.) towards the client application with very low 

latency. For these services, the round-trip time or lagging time during the service session between 

the client application and the interactive service is very important. This is illustrated in Figure 1.  
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Figure 1: Contributing factors of total feedback roundtrip time 

 

The total round-trip time in between the client sending some input and the client receiving the 

resulting reaction should be as small as possible for highly interactive services to reduce lagging time. 

On the other hand, when initiating a new session (by issuing a service request), it may be acceptable 

that finding an optimal service instance may take some time. For some services, it may be acceptable 

to only deploy a new instance on demand in order to provide the best quality of service and to avoid 

costly inaccurate or suboptimal pre-deployments. As a result, these services stress mainly the routing 

layer of FUSION for finding an instance with minimal roundtrip time and possibly reduced networking 

bandwidth requirements, as well as the orchestration layer and execution layer for efficiently 

deploying new instances on demand. 

2.1.4 Requirements 

Below an overview of the service requirements with respect to FUSION.  

Req no. Description Level
1
 

UUI-1 Support for short-lived request-response services. M 

UUI-2 Support for long-lived streaming services. M 

UUI-3 Support for long-lived interactive streaming services. M 

UUI-4 Provide low-latency service responses M 

UUI-5 Provide low-latency low-jitter feedback loops and interactivity M 

 

2.2 Multi-user aspects 

In FUSION, we target services that can be serving both individual clients as well as multiple clients in 

parallel. The first set of services provide personalized sessions towards a single client, whereas in the 

second set of use cases, multiple clients can make use of a shared service, or can even collaborate 

and interact with each other using the same session. An example of a single-user personalized 

service is an EPG service, where each user has its own personalized session, which is completely 

isolated from the other users. An example of a shared service is a shared dashboard or a surveillance 

                                                             
1
 The abbreviations indicate the level of importance and follow the MoSCoW method. 

http://en.wikipedia.org/wiki/MoSCoW_Method 

Client

2. Send feedback 5. Stream result

3. Process feedback

Service

1. Click button 6. Display result

RTT = Σlatencyi

6

i=1
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mosaic, where multiple users can have a common view. In this case, the individual users not always 

have to be aware that other users are involved in the same session. Finally, examples of collaborative 

services include a multi-player game, or a video conference service.   

2.2.1 Personalized services 

In case of personalized services, each service session is completely independent from the other, at 

least, at the level of what FUSION needs to manage and take into account. As a result, FUSION 

routing does not have to take into account the location of each session, and FUSION is completely 

free of choosing appropriate instances for handling a new service request. How stateful application 

services are handled is discussed in Section 2.3. FUSION service routers are responsible for finding an 

appropriate instance for each new service request. When no appropriate instance is available, the 

FUSION orchestration domain needs to be triggered to deploy new instances on demand. The 

orchestration domain has two main roles, namely (i) to properly anticipate service requests coming 

from particular regions of the network and appropriately pre-deploy instances based on predicted 

demand, and (ii) to efficiently and quickly deploy new instances on demand when needed. 

2.2.2 Shared services 

In case of shared services, two or more clients or service instances need to be able to connect to the 

same service session and therefore need to be routed and connected to the same service instance 

session. The simplest example is illustrated in Figure 2.  

 

Figure 2: Trivial example of service sharing 

In this scenario, service instance B and C (which can also be application clients) both need to be able 

to specify somehow that they are both interested in sharing the same service instance A. In case the 

services A, B and C are all part of a static service graph, it is the responsibility of FUSION 

orchestration to properly connect service instances B and C to A. In case B and C are in fact client 

applications or services that are dynamically connecting to A, B and C need to be able to identify a 

specific instance of A. This means that they both need to be provided first with an identifier or 

locator for A. In the current FUSION architecture, we assume this will occur outside of FUSION 

orchestration and routing. In the future however, we may study possible ways to enhance this, for 

example by means of introducing FUSION service instance IDs apart from service locators. 

In this model, B and C cannot directly use FUSION routing for finding the best instance of A. 

Nevertheless, FUSION orchestration and routing still can and will play a key role in: 

• Finding the optimal instance A, possibly given the location and properties of B and C are known 

before A needs to be selected (for example by D); 

• Finding optimal locations for deploying A, B and/or C on demand. 

2.2.3 Collaborative services 

Collaborative services face the same problems as shared resources, with the extra constraint that 

both services B and C can have a direct impact on the behaviour of A, and thus on what B and C will 

perceive. In case of a multi-game server for example, this means that A needs to be selected in such 

a way that B and C will experience a similar roundtrip time, resulting in even tighter requirements 

regarding placement or selection.  

Instance A

Instance CInstance B
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 An example scenario for a multi-user game scenario is depicted in Figure 3.  

 

Figure 3: Connecting to the same instance via an external component. 

1) In this scenario, both clients first connect to an external lobby service. This lobby service can be a 

FUSION service, but could just as well also be an external service that is not managed by FUSION, 

like for example a classical web service. The clients know how to locate this lobby service and 

announce their presence to the lobby service using an application-specific communication 

protocol. 

2) Upon the arrival of all clients, the lobby service issues a FUSION service request. This can be done 

either via the service routing or via the domain orchestration. In both cases, the lobby will 

receive the locators of instances A, B and C. 

3) These locators are returned to the respective clients, which then can directly connect to their 

corresponding instances B or C. Note that instances A, B and C should be chosen with respect to 

the location and characteristics of both clients. For example, if client 1 is residing in one country, 

and client 2 in another country, the locations of instances A, B and C should be optimized 

accordingly, based on the service requirements. 

4) In the last step, both clients connect directly to the corresponding instances B and C, which in 

their turn need to connect to the same instance A, using the locator of A. The latter may have 

been passed to B and C either in step 2, as one of the deployment or service selection 

parameters, or in step 3 and even in step 4 via the clients. 

Note that the example above only high-lights one conceivable scenario, and alternative scenarios are 

possible. 

2.2.4 Requirements 

Below an overview of the multi-user requirements with respect to FUSION.  

Req no. Description Level 

UMU-1 Personalized services M 

UMU-2 Automated distributed deployment of personalized services M 

UMU-3 Automated service routing to personalized services M 

UMU-4 Shared services M 

UMU-5 Automated distributed deployment of shared services M 

Instance A

Instance CInstance B

1

2

3

2 2

4 4

Client 1

1

Client 2

Lobby

3

4 4

FUSION service request

Non-FUSION request

Non-FUSION response
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UMU-6 Automated service routing to shared services C 

UMU-7 Collaborative services M 

UMU-8 Automated distributed deployment of collaborative services M 

UMU-9 Automated service routing to collaborative services C 

 

2.3 Statefulness of service instances 

Within a single service session, application services are assumed to be stateful. This means that for 

the data plane, the client needs to be able to communicate with the same service instance for the 

duration of the FUSION session. As FUSION routing only targets the control plane, this means clients 

need to be able to directly address the service instance after service selection. This can be done for 

example by passing back the locator (e.g., the IP address) of the selected FUSION service instance as 

a result of the service request.  

FUSION instances may however also want to maintain state across multiple service sessions coming 

from multiple service requests from the same or even different clients.  For example, a user may 

want to resume its game session, even when the user switched from a game console to a tablet. For 

other service types however, this is not necessary. We will elaborate on both cases and discuss the 

role of FUSION orchestration and routing. 

2.3.1 Stateless service instances 

For stateless service instances, the situation is trivial, as no state needs to be preserved across 

multiple sessions, neither by the application service, nor by FUSION. An example is a simple EPG 

service that always starts from the home page each time you reconnect to that service. This allows 

ultimate flexibility to FUSION for deploying and selecting an instance to handle the session, and does 

not require any session state to be maintained by the application services themselves. 

2.3.2 Stateful service instances 

In case of stateful instances, the session state should be preserved across multiple service requests. 

In general, this can be achieved in a number of ways: 

• A first approach is for the client to bypass FUSION routing when making a new session initiation 

request and directly contact the same service instance that was responsible for handling the 

previous session. This approach obviously has a number of drawbacks. First, as FUSION is 

bypassed for subsequent requests, it cannot assist in finding the location of the best instance for 

the client, which may have changed as for example the location of the client or the network 

availability may have changed since the last FUSION session. There may also not be enough 

session slots available for the corresponding service instance to properly handle the 

(unexpected) service request. Secondly, the instance or the session data may have expired in the 

mean time, rendering this option useless in case the previous session ended already a long time 

ago. Third, when another application client is used, the location of the service instance still needs 

to be transferred somehow to the new application client. 

• A second approach is to allow service requests to be done on FUSION service instance IDs or 

even FUSION service session IDs. This would still allow for some flexibility regarding the 

migration of service instances or sessions to other execution zones. However, this drastically 

increases the overall complexity and state that needs to be maintained by the service routers, 

with only limited return in value. For example, this approach still requires FUSION services to 

keep track of the old sessions and perhaps the corresponding allocated resources for a particular 

amount of time, which places additional burden onto the FUSION application services. 
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• A third approach is to leave it up to the application services to save the session state in an 

external database that can be accessed by any service instance. This way, FUSION can freely 

choose the optimal instance that then first downloads the session state from the known 

database or repository (which itself may be a FUSION service or an external service). Depending 

on the service type and the size of the session state, FUSION could even take the location of that 

remote repository into account via standard FUSION service selection requirements. The 

disadvantage of this approach is that the FUSION application services themselves are responsible 

for implementing their own service state management and corresponding repositories or 

database management. 

• A fourth approach is for FUSION orchestration to provide additional support for saving and 

restoring session state in a decentralized manner. This still allows for the flexibility of freely being 

able to choose service instances, but reduces the burden for application services to implement 

their own session state preservation and repositories. We envision this additional support as one 

of the possible future FUSION orchestration extension services that FUSION services can use. 

These extension services obviously would be treated as regular FUSION services with special 

storage and networking requirements. 

2.3.3 Requirements 

Below an overview of the service state management requirements with respect to FUSION.  

 

Req no. Description Level 

UST-1 Service routing to stateless application services M 

UST-2 Service routing to session/transaction stateful services M 

UST-3 Service routing to dialog/application stateful services C 

 

2.4 Service session slots 

In FUSION, we propose to make the available number of parallel sessions a particular service 

instance can handle more explicit. FUSION application services will typically be able to handle a 

particular amount of service requests in parallel. This significantly reduces the overhead related to 

service deployment and enables resource sharing and other optimizations at various levels. By 

making the number of available session slots explicitly visible, we envision to significantly reduce the 

amount of information that needs to be distributed and managed in the FUSION routing domain. 

FUSION application services can implement the concept of session slots via an internal service 

factory. 

 

Req no. Description Level 

USSS-1 Service instances supporting multiple parallel sessions M 

USSS-2 Service routing to available sessions rather than specific instances S 
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2.5 Service selection 

A key functional requirement for FUSION is being able to automatically select the optimal service 

instance for a particular service request. Different types of services may have different requirements 

regarding service selection. Some services may completely rely on the FUSION routing domain for 

automatically selecting the optimal instance. For other more complex services, like for example 

collaborating services, this is not possible. For these services, it may be up to the orchestration 

domain and/or the application itself for selecting an appropriate service instance, or for deciding to 

deploy a new instance in an appropriate location on demand. 

2.5.1 Network-driven service selection 

For simple single-user services with few critical parameters, the optimal service selection can be 

done automatically by the FUSION routing domain. For example, a client requests FUSION to find to 

an EPG instance, and the FUSION service routers automatically locate and/or connect the client to an 

optimal instance. 

2.5.2 Orchestration-driven service selection 

In other cases, it is not possible for the FUSION routing to automatically select the optimal service 

instance. For example, in case of a multi-user game or video conference, multiple users may want to 

explicitly join the same game or conference session. To optimize service selection for these use 

cases, another service should be used, e.g., a game lobby services, as depicted earlier in Figure 3 on 

page 13. This lobby service can trigger the FUSION orchestrator (for example when all users are 

present to start the game) to start selecting and/or deploying the composite service, taking into 

account the location of the individual users and the service requirements. The orchestrator then 

needs to return all necessary service locators back to the requesting lobby service, which then are 

returned to the relevant clients. Note that in this case, the service selection does not need to be 

optimized for the requesting client, but for the client applications that will be part of the multi-user 

session. 

2.5.3 Application-driven service selection 

For complex composite services with complex interaction patterns, FUSION is not responsible to 

coordinate the full choreography of message exchanges in between the various service components 

involved in the composite service function. For these services, it is up to the application to drive the 

service instance selection as well as the individual routing of messages. 

 

Req no. Description Level 

USS-1 Network-driven service selection M 

USS-2 Orchestration-driven service selection M 

USS-3 Application-driven service selection S 

 

2.6 Service scaling and placement  

Similar to service selection, different service types may require different service scaling, placement 

and deployment strategies, and may demand or rely on different FUSION components for efficiently 

deploying new service instances at different moments in time (i.e., pre-provisioned or on-demand). 
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2.6.1 Network-driven service scaling and placement  

In case of network-driven placement and deployment, the trigger for deploying a new service 

instance is coming from the FUSION routing domain, for example as part of a (series of) service 

request(s) for services for which no appropriate instances have been deployed yet. This can be 

because of an unexpected increase in service requests, or for services that typically require a more 

on demand approach. 

2.6.2 Orchestration-driven service scaling and placement  

Next to the on demand network-driven placement and deployment, the domain orchestration layer  

is responsible for pre-provisioning and pre-deploying service instances at particular locations based 

on predicted service demands, deployment policies and strategies coming from the service provider 

when registering a service. For example, in case of the image tagging or EPG services, the service 

provider may want to ensure a minimum amount of available service instances or session slots at 

specific moments in time, and expects from the FUSION orchestration domain to automatically scale 

up or down the amount of instances accordingly. 

2.6.3 Zone-driven service scaling and placement  

Inside an execution zone, the zone manager is responsible for deploying and placing the service 

instances inside the underlying data centre. This will typically involve a different set of placement 

algorithms compared to network or orchestration layer placement. We also envision execution zones 

to autonomously be able to scale up and down the number of active instances, for example to match 

the promised amount of available session slots per service type. 

2.6.4 Application-driven service scaling and placement 

Applications themselves may also trigger FUSION to place and deploy new service instances in an 

orchestration domain. For example, in case of a multi-player game or video conference, the request 

to set up a new session comes from another application making an explicit request to deploy a new 

instance in an orchestration domain. 

2.6.5 Evaluator services 

In FUSION, we envision using evaluator services for efficiently placing and deploying new service 

instances onto particular execution environments, without FUSION having to be fully aware or 

capable for understanding all detailed functional or non-functional requirements the services may 

have. With these evaluator services, some of the evaluation can be offloaded and handled in a 

customized fashion by the services themselves, which then provides scoring metrics that are fed back 

into FUSION for making the final selection.  

 

Req no. Description Level 

USP-1 Network-driven service scaling and placement M 

USP-2 Orchestration-driven service scaling and placement M 

USP-3 Zone-driven service scaling and placement C 

USP-4 Application-driven service scaling and placement M 

USP-5 Support for evaluator services for placement M 
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2.7 Service composition 

Next to atomic FUSION services, we also want to be able to describe, deploy and manage composite 

services, which consists of a connected graph of service atoms. Each of the atoms can be both 

autonomous services or merely subcomponents that are part of an end-to-end service delivered to 

the end users. As discussed in following sections, these graphs can be either static or dynamic in 

nature, and may be deployed in a distributed manner across multiple execution zones. Most of the 

use cases we will elaborate are in fact composite services. 

  

Req no. Description Level 

USC-1 Atomic services M 

USC-2 Composite service graphs M 

 

2.8 Dynamic service instance graphs 

We want to be able to support services with service instance graphs ranging from completely static 

service instance graphs to fully dynamic service instance graphs, both at specification as well as 

execution time. This range of dynamicity has a significant impact on the overall orchestration, 

execution as well as routing of these services. 

2.8.1 Fully static service instance graphs 

In the case of completely static service instance graphs, the entire service graph is known 

beforehand during registration. For these types of composite services, the FUSION orchestration 

domain knows the complete service graph, dependencies and perhaps previous monitoring and 

quality information upfront. This complete picture allows for more optimal service placement 

strategies. It also simplifies optimal service routing as both the complete graph as well as all service 

atoms are known beforehand. An example is the combination of object recognition service and a 

database service working together in a pre-defined manner. 

2.8.2 Fully dynamic service instance graphs 

In case of a fully dynamic service instance graph, FUSION only has a direct view of the individual 

service atoms and at best only indirectly of the entire service graph. The service instance graph is 

constructed dynamically and it is typically up to the responsibility of the service itself (e.g., through a 

special coordination service atom) to keep track of the complete service instance graph. Individual 

service atom instances will typically have their own lifecycle management, and thus may be deployed 

at different moments in time. As FUSION orchestration does not have information on the complete 

service instance graph, it cannot easily optimize the deployment or composition of the atoms with 

respect to each other, and at best only can optimize the point-to-point connections between each 

connected service atom pair in the graph. In case the service instance graph contains a special 

orchestration service to manage the dynamic service instance graph, this service could however 

communicate to FUSION orchestration for passing information concerning the dynamic service 

instance graph, and it may request specific deployments based on partial service graphs rather than 

point-to-point connections.  An example is a dashboard service containing multiple dynamic 

elements implemented by other services like news feeds or video streams, composed dynamically by 

the user.  
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2.8.3 Dynamic graph of static service instance subgraphs 

This category captures the range of service graphs that fall in between fully static and fully dynamic 

service instance graphs. Basically, it consists of a number of service instance graphs that are 

dynamically connected to each other, forming a larger dynamic service instance graph. Each 

individual subgraph can be deployed and managed as a static graph, which can be connected and 

disconnected on demand. Example use cases include a dashboard or EPG, onto which the output 

from other service instances or service instance graphs can be added or removed dynamically, as 

well as a multi-player game or video conference, in which users can be added or removed, either 

statically when the session starts, either dynamically during the game or video conference session. In 

the former case, when the session starts, the orchestrator can still assist in optimally placing the 

dynamically constructed graph, whereas in the latter case, FUSION can only do a best-effort 

approach, although it could assist in migrating components of the service graph when the placement 

becomes suboptimal. 

 

Req no. Description Level 

USG-1 Fully static service instance graph composition M 

USG-2 Fully dynamic service instance graph composition M 

USG-3 Step-wise service instance graph composition M 

 

2.9 Service distribution 

Service distribution enables optimally distributing the individual service atoms of a more complex 

composite service across multiple execution zones to meet the overall application requirements, e.g. 

regarding network latency, execution requirements, etc. In other cases however, the inter-service 

interactions may require a local deployment in the same execution zone (and possibly even the same 

execution point) because of high-bandwidth and/or low-latency interconnections. 

2.9.1 Local service deployment 

The communication pattern in between particular services may require that services should ideally 

be placed onto the same execution environment to minimize communication and computation 

overhead. There is a trade-off between placing two services next to each other and directly 

streaming raw data from one service to the other, versus deploying these services in remote 

locations and inserting computational intensive transcode operations to reduce network bandwidth 

at the expense of computational overhead and extra delay. In FUSION, we will evaluate this trade-off 

in a number of scenarios and evaluate the effectiveness of optimized inter-service communication 

channels in case of local deployments. 

2.9.2 Distributed service deployment 

In other cases, a distributed deployment may be necessary in order to meet the application 

requirements regarding network latency, compute and storage capabilities and/or efficient data 

access. In case of multi-user services for example (multi-user games or an advanced personalized 

video conferencing system), some of the shared services (e.g., the game server) should best run in a 

more centralized location, whereas the more personalized services should likely be placed closer to 

the corresponding end users. We will explore the impact of distributed deployment for such use 

cases in more detail.  
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Req no. Description Level 

USDD-1 Local service deployment inside the same execution point S 

USDD-2 Local service deployment inside the same execution zone M 

USDD-3 Distributed service deployment across execution zones M 

USDD-4 Distributed service deployment across FUSION domains C 

USDD-5 Mixed distribution service deployment M 

 

2.10 Inter-service communication 

Due to the inherent nature of the service types we want to deploy and evaluate in FUSION, inter-

service communication will often be very critical, be it in between services that are deployed locally 

on the same execution environment or distributed across different execution zones. 

2.10.1 Low-latency 

In case of a distributed deployment, low latency will be of key importance for particular sets of 

related services that heavily communicate with each other.  

2.10.2 Late binding 

Depending on the placement of heavily communicating services, the optimal communication channel 

and interconnect may be different. In case two services are running in the same environment or on 

the same machine, special communication channels, like for example shared memory, could be used 

for efficiently streaming raw high-bandwidth data in between services. In case these services are 

deployed on different locations or in different environments and regular networking infrastructure 

has to be used, additional functionality like transcode and encryption functionality needs to be 

inserted, impacting both the delay as well as computation requirements. We will evaluate the impact 

and consequences for both scenarios. 

 

Req no. Description Level 

UIC-1 Low-latency inter-service communication M 

UIC-2 Late binding support S 

 

2.11 Platform requirements 

In FUSION, we want to support the dynamic deployment and management of services that are 

demanding and interactive or real-time in nature.  This poses a number of challenges and 

requirements towards the execution environment on which these services are to be deployed. 

2.11.1 Fast service deployment 

For particular services, it is not economically feasible to properly pre-deploy them across a wide 

range of heterogeneous and geographically distributed execution environments. In these cases, 

FUSION needs to be able to quickly deploy new instances on demand onto one or more of these 

execution environments. This requires the capability to quickly deploy new services on the fly and 

therefore poses a number of requirements with respect to the service encapsulation and 



D5.1 Use Case Requirements, and Initial Design Page 21 of 53
 

Copyright © FUSION Consortium, January 2014 

deployment models. In FUSION, we want to explore the possibilities of light-weight virtualization and 

deployment techniques for efficiently deploying such services. 

2.11.2 Heterogeneous hardware 

Due to the distributed nature of execution zones, the available hardware profiles across these zones 

may differ substantially, both in nature and size. Centralized data centres and clouds may typically 

contain virtually unlimited amounts of general purpose computing capabilities, whereas smaller 

execution nodes close to the access network may be much more specialized and limited in nature. 

Secondly, particular services like game renderers may require specialized hardware like GPUs for 

efficient processing. In FUSION, we want to be able to take both cases into account when placing and 

deploying services across and within execution zones. 

 

Req no. Description Level 

UPR-1 Fast service deployment M 

UPR-2 Support for heterogeneous hardware M 

UPR-3 Support for application-domain specific hardware acceleration M 

 

2.12 Smart objectives 

FUSION has defined five SMART objectives which the use cases and evaluation scenarios will aim to 

meet through a combination of simulation and testbed-based experiments as detailed in the 

following. 

2.12.1 Reduced startup-time 

Reduce the start-up time for remotely executed service component instances to within the order of 

seconds compared to today's equivalent operation of instantiating a virtual machine in 10s to 100s of 

seconds. 

The project aims to meet this objective through the use of lightweight containers for deploying 

service instances rather than creating a virtual machine for each new instance. This is applicable to 

pre-deployment of instances by the orchestrator as well as to instantiation on demand. Both cases 

will be included in the demonstrator and instantiation times will be measured. 

2.12.2 Reduced network footprint 

Reduce total network traffic footprint (bits/s x number of network links traversed) by 50% for 

applications remotely processing large bandwidth streams by optimising the placement of service 

processing nodes. 

FUSION orchestration logic will use server placement optimisation algorithms to deploy instances in 

execution zones close to user demand thereby reducing the distance from user to server and the 

quantity of network resources that the traffic generated by the service will occupy. Having service 

instances running in execution zones close to the users is only part of the story as the service routing 

plane needs to be aware of the available instances and route requests to the closest execution zone 

where there are available resources to process the requests. As the iMinds and TPSA testbeds will 

have limited scope for wide-area network tests with large numbers of highly-distributed execution 

zones the evaluation will be augmented with simulations of larger-scale networks. 
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2.12.3 Reduced network latency 

Reduce the network component of application latency by 50% for remotely processed services such as 

personalised video and networked games by optimising the placement of service processing nodes. 

Intelligent server placement and service routing algorithms need to ensure service instances are 

geographically and topologically close to the users but they must also take into account the 

performance of the intervening network. Static models of network performance will be augmented 

by dynamically monitoring network latency and other network metrics. Tests to measure network 

latency will be undertaken in the project testbeds and will be complemented by large-scale 

evaluations through simulation. 

2.12.4 Optimal service selection 

The service resolution, selection and routing mechanisms should select service instances within no 

more than 200% of the optimal, in the worst cases, according to a combined metric that includes 

parameters such as RTT, throughput and service load. 

The FUSION service routing plane should direct service requests to nearby execution zones in terms 

of network performance metrics - to reduce latency and increase throughput – but the selected 

execution zone should have sufficient capacity to fulfil the service invocation request. The FUSION 

service routing plane therefore needs to be aware of server load and make appropriate trade-offs 

between network and service level metrics when forwarding invocations. A first approach to 

achieving this is the proposal to inject session slot information into the routing plane. Tests to 

measure the effectiveness of the routing algorithms in selecting close to optimal network 

paths+service instances will be undertaken through simulations but the ability to route requests on 

both network and service metrics will be demonstrated in the project testbeds.  

2.12.5 Low routing management overhead 

The exchange of routing information between service-centric routers will not exceed 5% of the 

capacity of the interconnecting links. 

Announcing the availability of a large number of services running in a large number of execution 

zones together with dynamically updated load and performance metrics can generate a significant 

amount of traffic unless aggregation and compact routing techniques are applied. The efficiency of 

the routing protocol overhead will be analysed through simulation to assess the trade-offs of 

overhead versus routing stretch and selection accuracy. Comprehensive evaluation of the 

effectiveness of the routing protocol versus the routing overhead is difficult to achieve in relatively 

small-scale testbeds so tests in the prototype will be limited to measuring the amount of routing and 

monitoring traffic generated in the project testbeds. 

 

Req no. Description Level 

USO-1 
Demonstrate that the creation of a FUSION service instance in a 

light-weight container can be achieved in less than 10 seconds. 
M 

USO-2 

Compare the traffic footprint of FUSION applications in different 

cases of server placement and service routing algorithms in the 

iMinds and TPSA testbeds, complemented by larger-scale 

simulations. 

M 

USO-3 
Measure the network latency between user and execution zone 

under different  server placement and selection/routing strategies in 

the iMinds and TPSA testbeds, complemented by larger-scale 

M 
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simulations. The performance of strategies with and without 

awareness of network performance metrics should be compared. 

USO-4 

Demonstrate that the FUSION service routing and forwarding 

algorithms take both network metrics and server load information 

into account. Show the difference when requests are forwarded 

based on a) network metrics only, b) server-load only, c) network 

metrics and server load. Simulate larger-scale networks and 

calculate the performance of the selected paths/servers compared 

to the optimal. 

M 

USO-5 

Measure the traffic generated by the routing protocol and 

monitoring systems in the FUSION testbeds. Evaluate routing 

overhead versus routing stretch and selection accuracy through 

simulation. 

M 
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3. USE CASE MODELING & DESIGN 

In Deliverable D2.1, we provided an overview and high-level description of possible use cases and 

applications that may benefit from FUSION. In this section, we will discuss in more detail a selected 

subset of these use cases, and we will high-light what their key requirements are with respect to the 

FUSION architecture. From a high-level point of view, the selected use cases can be placed into four 

major categories: 

• Single-user personalized services: EPG, video tagging, single-user game 

• Multi-user collaborative services: multi-user game, video conference 

• Short-lived request/response services: image tagging 

• Dynamic service composition: dashboard, EPG 

In the following sections, we will discuss and model each use case in more detail. We selected these 

use cases because each of them showcases and evaluates one or more key functionalities and 

features of the FUSION architecture. 

3.1 Dashboard and EPG 

The media dashboard use case is an example of an advanced 2D or 3D user interface that is rendered 

in the network as a FUSION service and that represents a next-generation Electronic Program Guide 

(EPG). Next to the basic functions you typically expect from a media dashboard or EPG, like changing 

the channel, browsing through the TV guide, etc., it can also be a portal to other types of content, 

including personal videos and pictures, games, or other interactive FUSION applications. 

Technically such a media consumption scenario may be implemented by a combination of multiple 

service software components. Of course, depending on the situation not all service components are 

necessary, or additional service components are used. An example media dashboard service is 

depicted in Figure 4. 
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Figure 4: Example media dashboard service graph and service components 

This diagram contains different types of possible service components: 

• A private 3D UI contains the dashboard for one particular user, for example a 2D or 3D 

composition with per-user functionality. For example, the top user in the diagram may play a 

multi-user video game in this private 3D UI. 

• In this particular scenario the private 3D UI is rendered not on the end-user device (for example 

because it is a mobile or thin TV device which is not powerful enough). Instead the 3D UI is 

rendered in a service software component that is running not on a cloud server, but on an ISP 

server that is closer to the user and therefore providing more responsiveness.  

• Transferring the video stream from the private 3D UI service to the end-user device requires 

encoding and decoding the video stream, which may not be statically integrated into the 

particular software, but implemented as separate services. In the above sample diagram the 

video encoder services are demonstrated. 

• A shared 3D room client is an example of a dashboard that is shared between multiple users. This 

provides for example an environment where two people can browse a photo library together, 

browse available VoD series episodes, have a shared image viewer and VoD selections. 

• The execution environment hosts various service components for media consumption, e.g. VoD 

servers, image libraries or game servers, which transfer or stream their data to the dashboard 

service components. 

A core aspect of the EPG use case is that it is a classic example of a low-latency interactive 

personalized streaming service, where both the personalization aspect as well as the low-latency 

interactivity are two crucial aspects. The former aspect may require dedicated hardware for either 

rendering or streaming the output in a cost-efficient manner to the end devices of the users, 

whereas the latter aspect impacts the placement and deployment of these services in the network. 
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Depending on the dynamicity of the EPG service, the nature and location of the input streams for the 

EPG service may also impact the overall dynamicity and placement of the service as handled by the 

FUSION architecture. Being also a key service of many ISPs, the EPG use case also represents an 

excellent primary candidate for ISPs to start deploying in their network and data centre 

infrastructure using the FUSION architecture.  

A core aspect of the dashboard use case is the feature that the service instance graph is not static, 

but has to change dynamically: a service can dynamically connect to new services at different times. 

For example, the user may use the dashboard to choose a video, and then the dashboard service 

uses FUSION to request that particular video service, and streams data from that video service 

instance into the existing dashboard service instance. 

3.1.1 Client and Backend Interactions 

In Figure 5, a sequence diagram is shown for a client connecting to a running EPG service instance. 

Solid arrow lines represent message-based communication, whereas dotted arrow lines represent 

streaming communication; similarly, black lines represent in-band FUSION communication, whereas 

blue lines represent out-of-band non-FUSION communication. As can be seen from the diagram, we 

modelled the video feeds to be streamed outside of FUSION, though this may only be required for 

legacy clients using legacy video streaming formats. 

 

Figure 5: Client connecting to an EPG Service Instance 

Basically, a client first issues a service request for a service with name “EPG”, along with a number of 

FUSION and non-FUSION service request parameters, describing the context of the session. These 

parameters may include the response channel over which to send back the result, the resolution and 

quality, an identification of the end user, etc. As a result, the (by FUSION) selected service instance 

will create and prepare a temporary session to handle the service request, and send back a response 

to the client. This response may include how and where to contact the EPG session, including the 

video feed and feedback channel. There may also be a control channel that acts as a keep-alive so 

that the EPG service session can detect when the client disconnects (abruptly), after which it may 

decide to terminate the session.  

The service instance itself will typically also communicate with a number of input sources that 

provide the main content for the EPG service. This may include both FUSION sources as well as 

external sources, and may consist of both static and interactive content. In the latter, the EPG service 

may have to forward the feedback coming from the client to the other service, so that the client 
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appears to be directly interacting with the other service (e.g., a game client). This is backend service 

diagram is depicted in Figure [ref]. 

 

Figure 6: Backend Resources for EPG Service Instance 

 

3.2 Real-world tagging 

The tourist office of A Very Modern City rents head-up displays with integrated front-facing cameras 

to city visitors. Useful information is presented as a graphical overlay on the display. The service is 

tailored to the user’s location and preferences. Going beyond elementary GPS-based location 

tracking to determine the position of the user, the content and the position on the display of the tags 

is calculated by analysing the video feed from the front-facing camera integrated in the head-up 

display. The presented tags may contain historical or practical information (e.g. expected arrival time 

of next bus), advertisements (e.g. to reserve a restaurant in the current street) and messages left by 

friends who have previously visited the same location (e.g. to discommend a restaurant). 

The video feed from the front camera is continuously streamed to the back-end infrastructure, 

comprising multiple small execution zones managed by FUSION. The idea is presented in Figure 7. 
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Figure 7: Video captured through head-mounted cameras are analyzed in the network. The 

resulting overlay with tags of recognized objects is transferred back to the client. 

 

From the application perspective, low latency is key since the overlay must be correctly positioned 

according to the user’s current gaze. From the system perspective, multiple replicas of the tourist 

guide service must be correctly distributed across the different zones to guarantee the application 

QoS constraints, taking into account the costs associated with allocating resources on the small-scale 

execution zones distributed in the access and aggregation network. 

User mobility, demand variations and the use of different wireless access technologies (Wi-Fi, 4G) 

result in continuously varying context and network parameters that are monitored by the FUSION 

platform. The client component of the tourist guide, installed on the head-up display, is FUSION-

aware and is always connected to the most optimal service replica.  

We will demonstrate two scenarios, differentiated by the duration of the session between the client 

component and the overlay renderer. 

3.2.1 Short-lived sessions 

This scenario will demonstrate independent request-response patterns between a service instance 

and the FUSION service routing plane. A client will send a frame of the video along with his name-

based request for the tagging service. FUSION routers will deliver this request to the most 

appropriate instance, based on the actual status of the network and server load. The response 

(position and size of the rectangle) will be returned via the FUSION service routing layers. 

In the short-lived session scenario, the service specific data is piggybacked with the FUSION request 

for service instance selection.  Possibly, a different instance is selected for each new request for the 

tagging service. 
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Figure 8: Each tagging request can be routed to a different instance. 

3.2.2 Long-lived sessions 

In this scenario, a session will be established between the client and the tagging service. The FUSION 

service routing plane is only used for instance selection and possibly session set-up. The service 

routers return to the client the locator of the selected instance. The client then sets up a session with 

the selected instance outside of the FUSION service routing plane. 

 

 

Figure 9: The FUSION service routers only select a service instance. Service-specific communication 

happens outside of the FUSION service routing plane. 

3.3 Thin-Client 3D Game 

In this section, we discuss the single-user game scenario. 

3.3.1 Overview 

In the 3d game use case a game service component is running for example in a centralized data 

centre or closer the edge. This use case is similar to today’s cloud gaming: user input (keyboard, 

mouse, gamepad) is sent from a client device (e.g. PC or tablet) to a service instance in the network 

running the game. The service instance simulates the game, renders the resulting 3d image, and 

transfers the output as video stream back to the client device. 

The intention of this use-case is to demonstrate the benefits of FUSION for cloud-gaming use cases. 

For example, a FUSION orchestrator can optimize the placement of a game service, e.g. at the edge 

closer to the user having lower response time instead of a data centre. 
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3.3.2 Resource usage optimization via the session slots mechanism 

This use case will also demonstrate structural differences in the service implementation itself when 

using FUSION. In classical cloud gaming, one running instance of the game can usually handle only 

one game session, because typical games are usually designed as single-session applications for end-

user devices, and ported as such onto cloud servers directly. In the FUSION prototype we plan to 

demonstrate the session slot mechanism: One instance of the game service can handle multiple 

independent game sessions for different users. This has various advantages compared to classical 

cloud gaming implementations. 

One advantage of the slot mechanism is better memory resource utilization: program code and game 

assets like 3D geometries or textures have to be loaded only once and can be shared by multiple 

sessions. Only the game state itself must be kept separately for each user. Technically this will be 

implemented by using a component based architecture (presented visually as nodes to the game 

developer), allowing to define factories for instantiating session specific component graphs, which 

access and use data (e.g. assets) from shared components. Based on an existing component 

architecture, FUSION implements a new factory mechanism for instantiating separate input channels 

and output render views, and connect them with instances of components for representing the 

individual game state for each user. 

3.3.3 Component-based slot mechanism implementation 

Technically this use-case will be built on an extended version of the commercial Shark 3D software of 

Spinor. This software is a commercial middleware and authoring editor for creating interactive real-

time 3d applications like for example games or 3d user-interfaces. Spinor is working on modifying 

and enhancing this software to support the implementation of FUSION service components. 

Advantages to base the implementation on a commercial software are: simplifying the creation of 

non-trivial interactive service components, since the Shark 3D software provides many features out 

of the box which can be re-used, and allowing the creation of use-case prototypes which have 

industry-typical characteristics, since the software is currently being used in the industry. 

3.3.4 Evaluator service 

The gaming use-case is also an ideal sample of demonstrating the advantage of evaluator services, 

since such a gaming service has particular hardware demands that are not available on many typical 

cloud servers. This particular gaming use-cases require a GPU supporting at minimum Direct 3D 

feature level 10.1. 

3.4 Thin-Client Multi-User 3D Game 

Another use-case is a multi-user 3d game. In contrast to a classical multi-player gaming architecture 

of connecting multiple game clients running on client devices or on cloud servers to game servers, in 

this use-case we use one FUSION game server service to host the whole game for multiple users 

playing together. 

This use-case is a sample where multiple users connect to the same service. Similar to the slot-based 

single-player gaming services, each user needs a separate instantiation of components, for example 

for rendering the user-specific personalized 3D output, because every player usually sees a different 

section of the virtual game world from a different perspective, and different state needs to be 

maintained per player, like for example health, location, items and scores. However, in contrast to 

the slot-based single-player gaming services, all players not only share the same assets, but share 

also the same 3D state. This will be implemented using existing components of the underlying 

software from Spinor combined with a new service-oriented FUSION-specific component structure. 
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Therefore technically, this use-case also provides a different case of how a service instance handles 

multiple users by combining component instances shared by all users with other component 

instances that are specific for each user. 
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3.5 Summary of use cases and their requirements 

In the table below, an overview is shown of the selected use case scenarios and the list of 

requirements each of the use cases are stressing. The symbol “X” denotes that typical variants of the 

selected use case scenario contain the requirement, whereas “(X)” denotes that some but not 

necessarily all variants of the use case scenario exhibit the requirement.   
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4. TESTBED ENVIRONMENTS 

This section describes the main hardware and software environments and infrastructure that we 

intent to use for developing our prototypes and evaluating various key functions of the FUSION 

architecture.  

4.1 IMinds Emulation Platform 

4.1.1 Virtual Wall 

The evaluations are performed on the iMinds Virtual Wall from its iLab.t Technology Centre 

(http://ilabt.iminds.be). The Virtual Wall facilities currently consist of 2 deployments (with 200 nodes 

and 100 nodes respectively). Servers have 4 to 6 cores per machine, and are connected with 4 or 6 

gigabit Ethernet links to a non-blocking 1.5 Tb/s VLAN Ethernet switch.  At this stage, the target in 

FUSION is to allow access to the newest deployment of the Virtual Wall of which all instances are  

reachable through the public Internet using the IPv6 protocol. The node specifications are listed in 

Table 1. 

Table 1  - hardware configuration of the Virtual Wall 

Regular nodes (100) GPU-equiped nodes (2) 

Dual INTEL XEON E5645 

24 GB RAM 

250 GB (single disk) 

 

Dual INTEL XEON E5645 

12 GB RAM 

4x GeForce GTX 580 

4x 1TB in RAID-5 

 

The Virtual Wall nodes can be assigned different functionalities ranging from terminal, server and 

network node to impairment node. The nodes can be connected to test boxes for wireless terminals, 

generic test equipment, simulation nodes (for combined emulation and simulation) etc. The Virtual 

Wall features Full Automatic Install for fast context switching (e.g. 1 week experiments), as well as 

remote access. 

Being an Emulab testbed at its core, the Virtual Wall offers the possibility to create any desired 

network topology and add any desired clients and servers. Emulab allows for repeatable, dedicated 

and confined experiments and is responsible for swapping in required operating system images, 

dynamically interconnecting the (virtual) nodes through VLANs on a network topology with emulated 

network links (with proper capacity, delay and packet loss characteristics). 
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Figure 10  The Virtual Wall is controlled by Emulab management software for deployment of OS 

images, and configuration of network topology and network impairment. 

The Virtual Wall also provides the necessary network monitoring tools, based on the Zabbix 

framework [ZAB13], to examine network traffic and consumption of memory, CPU, disk load and 

energy on the different nodes. 

In addition to the network layer functionality, applications can be deployed on the Virtual Wall nodes 

controlled by the researchers through VM images. These instances can also be monitored 

(bandwidth, CPU and memory consumption, response times and availability over time) and can be 

invoked through request generators. These request generators can be tuned in a variety of different 

parameters (e.g. spatial request distribution, temporal request distribution, popularity of service 

instances) and assign the client locations through automated generation of scripts. 

4.1.2 Validation tools 

4.1.2.1 NS-2 experiment description 

In Emulab, experiments are described using NS-2 scripts, for which advanced tutorials
2
 are available.  

The deployment script describes all nodes and their interconnecting network links. For each node, 

we can describe desired functionalities (e.g. GPU required) and the operating system (e.g. Ubuntu, 

Windows). 

By scripting the deployment, a wide range of hardware topologies can be evaluated. For example, we 

can study different zone architectures, or network topologies between zones. A sample script is 

shown in Figure 11. 

                                                             
2
 http://users.emulab.net/trac/emulab/wiki/AdvancedExample 
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Figure 11: Sample ns-2 configuration to deploy an experiment on the Virtual Wall. 

4.1.2.2 Netbuild GUI 

Besides an XML RPC
3
 interface, a graphical user interface is available on the Virtual Wall platform as 

well. This allows for intuitive and rapid prototyping of different set-ups. An example is shown in 

Figure 12. 

                                                             
3
 https://www.emulab.net/xmlrpcapi.php3 
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Figure 12: Rapid prototyping via the GUI 

4.1.2.3 Monitoring 

The Virtual Wall has several components that allow monitoring network and application 

performance. In some cases, some minor integration work with the Virtual Wall can be needed. 

4.1.2.4 Monitoring of Hardware performance 

To monitor the hardware performance of a server, a distributed monitoring architecture exists on 

the Virtual Wall. This monitoring architecture consists of several small monitoring probes that 

measure power consumption, memory usage, etc. and transmit it to a central server. Each 

monitoring probe contains a transactional database, to store the measured data in a cyclic manner, 

and a web interface, to provide visual information (e.g. through real-time graphs). The following 

metrics can be measured through the architecture: 

• Memory usage 

• CPU usage 

• Transfer rate on the hard drive in terms of read and write operations 

• Incoming and outgoing bit rate on a network interface 

• Actual voltage 

• Total power consumption 

• Environmental temperature (e.g. temperature close to the device) 

4.1.2.5 Monitoring of Network Performance 

Two distinct types of network monitoring probes exist on the Virtual Wall. A Click Modular Router 

[KMCJ00] based monitoring probe, and a libpcap based monitoring probe. The first one can be used 

when integration with Click is advisable (e.g. when existing sessions need to be altered through 

shaping and policing). The latter is optimized for application specific monitoring situations (e.g. the 

monitoring of video quality). 
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Both monitoring probes monitor typical QoS parameters such as packet loss ratio, delay and jitter in 

real-time. Furthermore, the Click based monitoring probes contain different bandwidth 

measurement algorithms to monitor the used resources. Depending on the envisaged use case, 

monitoring can occur on session, subscriber and node level. 

Besides monitoring the actual network performance, the Click based monitoring probe can estimate 

packet loss, delay and jitter by monitoring intermediary in the network. This estimation can be 

interesting if user-experienced network performance must be measured in a network environment 

where the operator has no control on the end devices (e.g. a laptop in the home network). The 

carried out estimation has an accuracy between 95% and 100%. 

4.2 TPSA evaluation platform 

The evaluation platform to be used by TPSA in the FUSION demonstrator is shown schematically in 

Figure 6. In principle, this setup will enable modelling the components that represent users, the 

network and the data centre – all of them being relevant to the FUSION architecture. 

The user and the core network sections will be based on a grid cluster containing 11 IBM BladeCenter 

servers (36 cores in total). The cluster operates in public IP address space and is fully accessible from 

outside, and thus can easily be interconnected with the facilities provided by other partners. 

Apart from delivering services to FUSION-enabled clients, there will be a possibility to emulate 

background traffic generated using either artificial models available in software tools such as, e.g., D-

ITG [DITG13] and Ostinato [OSTI13], or generated based on packet-level traces captured in a real 

network. 

The core network, also hosted on the grid cluster infrastructure, is emulated using Vyatta [VYA13] 

software routers run under Ubuntu OS in VMware environment. Vyatta  is an open source solution 

with the possibility to use dynamic routing, BGP, MPLS and also other features useful in WAN 

applications. Some of them that are relevant to FUSION experimentation are: measurements and 

monitoring for such parameters as bandwidth, injecting disruption in each node, and the ability for 

integration with network monitoring applications such as Nagios [NAG13]. 

The data centre is based on Cisco platform that currently includes the following main components: 

• 4 x UCS-SP6-EV-B200 blade servers: CPU 8 x 2.00 GHz, RAM 512 GB, HDD: 4 x 600GB, SSD: 4 x 

100GB, I/O Module: 2 x 8 Ext., 2 x 32 Int. 10Gb Ports 

• 2 x Cisco ASR1002-X : 6 x GE, Dual P/S, 4GB DRAM 

• 8 x Cisco Nexus 1000v switches, 2 x Cisco Nexus 5548 32 x 10GbE switches 

In order to align with the majority of the experimentation scenarios, Cisco DC platform will be 

enabled to host an instance of OpenStack (apart from natively hosted VMware vSphere [VSPH13]). 

Being available to all partners of the consortium, this OpenStack instance will serve similar goals as 

those described in Section 4.4. However, its additional value will be to enable increased geographical 

span of FUSION services or their components thus providing a more realistic (distributed) 

environment for the evaluation of main FUSION concepts. 
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Figure 13 Schematic diagram of TPSA evaluation platform. 

For the experimentation purposes, monitoring of the core network part will be based on Nagios. 

Actually, Nagios has already been integrated and used within the platform. We envisage that 

monitoring of cloud resources and service components running in OpenStack will be accomplished 

through the REST API of Ceilometer monitoring facility that has been developed within OpenStack 

project (Ceilometer closely resembles the Amazon Cloud Watch monitoring service). 

4.3 Experiments in Public Clouds 

The available partner testbeds are limited in geographical coverage which constrains the number and 

location of execution zones in the demonstrators. The project will also investigate the use of public 

clouds for wider-scale experiments. Virtual machines could be instantiated in resources in 

commercial services such Amazon EC2 or Rackspace [RACK13] which would allow tests to be 

conducted in and between widely distributed locations around the globe. One option would be to 

instantiate VMs on the EC2/Rackspace clouds in ten or more locations, each representing FUSION 

execution zones, and to make use of PlanetLab [PLAN13] to model users located at diverse locations. 

Such a test environment would enable experiments with FUSION server placement algorithms 

selecting between geographically distributed execution zones with more representative performance 

measurements being made. These options will be explored further during the second project year to 

design appropriate experiments that could benefit from running in such an environment. 

4.4 OpenStack 

As discussed in deliverable D3.1, we envision an overlay approach for implementing the key 

functionality of a FUSION execution zone on top of existing cloud or data centre management 

platforms. During the project, we plan to build upon and extend OpenStack in a number of ways: 

• We will use an OpenStack environment for deploying many of our use-case driven application 

services; 

• We will design and implement a prototype execution zone that can interface with the OpenStack 

APIs for automatically deploying FUSION services on top of an OpenStack environment; 

• We will investigate how to extend OpenStack for supporting and enabling a number of key 

features: 
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• Efficiently deploying FUSION services using light-weight virtualization and deployment 

models; 

• Exposing and exploiting heterogeneous hardware infrastructures and hardware accelerators; 

• Advanced monitoring capabilities for enabling better QoS; 

• Support for describing and orchestrating distributed service graphs across multiple execution 

zones. 

Obviously, we will also keep track of the new features added by the OpenStack community related to 

these aspects listed above. 
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5. FUSION TEST CASES / SCENARIOS 

This section provides an overview of specific test cases and scenarios that we envision to evaluate 

within the FUSION project. Each of these test cases cover a smaller aspect of the FUSION architecture 

and functionality, and can consist of a number of dedicated experiments, simulations, 

measurements, analyses, prototypes, PoCs, etc. 

In this section, we will list an initial set of test cases and describe for each of these test cases a 

number of aspects: 

• A high-level description of the test case 

• The overall intent is of the test case 

• An initial description of how we intent to implement and evaluate the test case 

• How it may contribute to the FUSION architecture, design, objectives or demonstrator 

We will categorize these test cases based on the key FUSION layer they operate in. 

5.1 Orchestration layer scenarios 

This section covers test cases related to registering, deploying and managing FUSION services across 

multiple execution zones in a FUSION domain. 

5.1.1 Service registration 

The first step for any service to be deployed and managed by FUSION is to register the service to a 

FUSION orchestration domain via a service manifest. After the registration procedure, the service 

should be immediately deployable. As a result of the service registration procedure, the 

orchestration domain could be immediately triggered in pre-deploying a number of instances based 

on provided service scaling policies.  

In this project, we want to describe and evaluate a number of service registration scenarios in the 

demonstrator environment to evaluate the flexibility and agility of registering new services. 

5.1.2 Evaluating the 4-step placement strategy 

In Deliverable D3.1, we propose a four-step placement strategy, involving evaluator services, for 

evaluating the feasibility of a particular (set of) execution zone(s) for deploying new instances of an 

atomic or composite service.  

We intend to implement and evaluate this placement strategy, both in the context of the final 

demonstrator as well as in a more dedicated setup. 

5.1.3 Evaluating the effectiveness of evaluator services 

In Deliverable D3.1, we claim the necessity of evaluator services for efficiently evaluating the 

feasibility of deploying new instances in particular execution zones, even in the case of complex 

service graphs or other related services. 

We will evaluate the effectiveness and scalability of these evaluator services in the context of one or 

more service deployment scenarios that we will provide. 

5.1.4 Composite service placement and deployment 

In FUSION, we want to support placement and deployment of different types of composite services, 

either orchestration-driven, network-driven or application-driven. In the course of the project, we 

will evaluate these scenarios in a number of test scenarios as well as implement and evaluate 

particular scenarios in our demonstrator setups.  
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5.1.5 Service scaling 

In FUSION, we will develop and evaluate service scaling algorithms for automatically scaling in and 

out the number of available service sessions based on predicted service load patterns. We will set up 

a series of dedicated experiments as well as a implement a limited scenario in the final demonstrator 

setup. 

5.2 Networking layer scenarios 

As regards the experimental testbed, networking layer scenarios will be focused on service routing 

optimisation for high-volume-fine-grained services. For scalability as well as practical reasons, static 

routing at the IP transport layer will be assumed. Optimisation will be achieved by dynamically 

mapping clients (requests) to execution zones under the assumption that service routing is 

controlled by the ISP and is based on up-to-date network monitoring information. This scenario will 

make use of topological diversity of execution zones that can host particular services. This diversity 

will be achieved via appropriate orchestration and then announced to the service routing layer. In 

general, two main options can be considered for the latter step, namely, announcing service 

availability through the service routing protocol (initiated from execution zones), and learning the 

location of execution zones by service forwarders through routing hints obtained by service 

forwarders from the orchestrator. It is expected that the properties of these two options will be 

studied in more detail through analytical and/or simulation means to indicate the final candidate(s) 

for development and use in the demonstrator. 

5.3 Execution layer scenarios 

This section covers test cases related to deploying and managing FUSION services in execution zones, 

as well as managing the execution zone services themselves. 

5.3.1 Cross-platform service deployment 

Due to the distributed nature of multiple execution zones within an orchestration domain, FUSION 

services should be able to be deployed automatically in heterogeneous environments, containing 

different hardware resources, data centre management platforms as well as the services having 

different platform requirements (e.g., Windows versus Linux environment). We will set up a number 

of specific test cases and evaluate the effectiveness regarding deployment efficiency and overhead. 

5.3.2 Implementing a prototype EZ on top of OpenStack 

As described in Deliverable D3.1, we plan to deploy a zone manager on top of an existing data centre 

management platform via a data centre specific abstraction layer. For the demonstrator, we will 

develop such abstraction layer on top of an OpenStack environment, using the OpenStack APIs as 

south-bound communication interfaces. This may also include extending or integrating particular 

components directly in OpenStack for extra support, for example regarding hardware acceleration, 

light-weight virtualization or monitoring. 

5.3.3 Optimizing media applications in virtualized environments 

Due to the inherently demanding nature of many of the selected use cases, efficiency and 

predictability are two key aspects. Within the scope of the project, we will evaluate the efficiency 

and predictability for media processing applications when deployed in virtualized and cloudified 

environments. These tests may consist of a series of both dedicated as well as integrated test setups. 

5.3.4 Deploying a FUSION service using a light-weight containers 

In FUSION, we want to be able to quickly deploy new instances on demand with small overhead both 

during deployment as well as execution time. One approach we want to evaluate is the use of light-

weight virtualization and Linux containers for being able to quickly provision and deploy new 
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instances onto a new environment. This includes the overhead of fetching the software packages, 

preparing the environment, etc. We will set up a number of test cases and we will integrate this as 

well in the final demonstrator. 

5.3.5 Enabling hardware acceleration for FUSION services 

Many of the envisioned FUSION application services depend on specialized hardware for efficiently 

running the service. Examples include a 3D game service that heavily depends on a GPU, (interactive) 

streaming services that rely on scalable encoding or transcoding hardware for cost-efficient 

processing. We will evaluate the necessity, feasibility, and practical usage of hardware acceleration 

both from a theoretical/business point of view as well as integrate the usage of one or more 

hardware acceleration boards in the final demonstrator setup. 

5.3.6 Late binding acceleration between co-located FUSION services 

In FUSION, we want to be able to deploy new instances on demand with minimal communication 

overhead in case the services are co-located on the same executing platform. An approach we want 

to evaluate is the use of shared memory as a communication technology whereby the binding logic is 

implemented at application level or hosting platform level. We will set up a few test cases to 

demonstrate the alternatives and provide networking related metrics (BW, throughput, latency, 

etc.). 

5.3.7 Monitoring of FUSION services and platforms 

In FUSION, we will evaluate the necessity, feasibility and practical usage of hardware monitoring 

from a platform and application point of view as well as integrate the usage of one or more 

configurable monitor probes in the final demonstrator setup. 

5.4 Service layer scenarios 

This section covers test cases related to various service related aspects, such as service composition, 

monitoring, the session slots, service requests, etc. 

5.4.1 Composite service description 

In FUSION, we want to be able to support services with different types of service graphs (static or 

dynamic). We will evaluate the effectiveness of existing description languages like TOSCA for 

describing these service graphs, and we will also evaluate how this impact the overall handling of 

these types of services within the FUSION orchestration layer. 

5.4.2 Session slots 

We propose the concept of service session slots in FUSION for efficiently managing service instances 

and service sessions and efficiently routing individual service requests towards available instances. 

Within the scope of the project, we will implement the concept of service factories and session slots 

in most of our demonstrator services and exploit the concept at multiple layers throughput the 

demonstrator design. We also may perform additional theoretical studies regarding the overall 

flexibility and limitations of using session slots as key ingredient for efficient service deployment and 

service routing. 
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6. DEMONSTRATOR DESIGN 

This section covers the motivation and initial plans for developing an integrated demonstrator, 

bringing together several core pieces of the FUSION architecture and key functions, applied to 

selected use case scenarios. 

6.1 Goals and objectives 

The overall goal of the demonstrator is to implement the FUSION core architecture and integrate 

several key FUSION functions in a demonstrator. This demonstrator will be used to validate the 

FUSION architecture for the key use cases, and show how the FUSION architecture can address their 

key requirements, including distributed deployment, automatic scaling, intelligent routing, efficient 

deployment on heterogeneous systems, etc. Vice versa, the demonstrator will also be used to 

validate a number of key principles early on, and to identify key bottlenecks and problems regarding 

some of the assumptions, thus providing valuable feedback early on when developing strategies and 

algorithms for efficient deployment of services and service request routing.  

Consequently, the overall strategy we are taking with the demonstrator design is to start with a 

rather simple setup, focussing on first preparing an initial infrastructure as well as integrating a 

number of key service components, and add increasingly more functionality and dynamicity in an 

iterative agile fashion, rather than trying to design and build the full system at once from scratch. 

This agile development cycle will enables us to have a closer and quicker alignment between the key 

contributions from the various partners, and also allows us to more quickly find bottlenecks and 

problems in the overall design and implementation. On the downside, this iterative design process 

may also result in having to redesign portions of the solution in order to provide some new key 

feature or function. For example, to provide dynamic automated service deployment, some aspects 

of the basic infrastructure may have to be redesigned or reimplemented; to add service routing, the 

service components may need to be modified to support specific features and APIs, etc. 

6.2 Initial demonstrator architecture and design 

As mentioned before, the intention is to start from a simple initial design that only supports some 

basic features and later extend this in a structured manner. In this section, we provide details on 

related aspects, for example, how we envision the initial demonstrator architecture, what the key 

software and hardware components are that we plan to integrate, etc.  

The overall goal of the initial demonstrator design is to bring together existing software components 

and services, agree on a number of common initial interfaces amongst the partners that provide 

these service components and deploy them on a common basic infrastructure. In this initial design, 

the services will be deployed manually in a specific environment; the services will be accessed via the 

standard Internet protocols (DNS, TCP/IP, etc.). 

6.2.1 Basic infrastructure 

In the first version of the demonstrator, a single FUSION zone will be emulated on the Virtual Wall 

environment of iMinds. The zone will be managed by OpenStack. Figure 14 demonstrates all 

components of the intended initial set-up. 
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Figure 14: Deployment on the iMinds Virtual Wall 

In the first version, all nodes will only be accessible over IPv4 after logging in to the intranet of iMinds 

via VPN. Public access via IPv6 will be added in a second version. The set-up emulates one Execution 

Zone in the FUSION architecture. The different nodes in the zone are managed at infrastructure level 

via OpenStack. At the platform level, we will study the integration with PaaS managers such as 

Docker and include Zone Orchestration functionality. 

The Controller node hosts the OpenStack management software and also serves as Compute Node 

onto which Virtual Machines can be deployed. In Figure 14, VMs with the EPG (ALU), the Overlay 

Renderer (iMinds) and the Overlay Proxy (iMinds) have been deployed on the Compute Node, 

whereas two VMs (streamer (ALU) and game or dashboard (Spinor)) will be deployed on the node 

that is also the controller node. Owing to the lack of GPU pass-through support in OpenStack, 

Spinor’s game and dashboard will not run on a Compute Node managed by OpenStack, but on an 

external node. The Recognition service (iMinds) is running on a 4
th

 node. This emulates a ‘distant’ 

cloud. The Recognition Service will contain a database with objects to be recognized. Lastly, a client 

node will emulate a client service requesting a service from the FUSION service routing layer. 

6.2.2 Service graph 

The initial service graph is shown in Figure 15 below. We integrated a number of individual 

application services, each representing a different use case, into one combined service graph. This 

not only forces us to actively integrate the various services into a common infrastructure and use 

common communication APIs, it also serves as a first example of a non-trivial distributed service 

graph that we later can further extend and deploy in a distributed fashion across multiple execution 

zones. Obviously, it is also possible to define smaller service graphs that only contain a subset of 

services (e.g., only the EPG service with streamer, etc.).   
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Figure 15: Schematic view of the integrated service graph 

 

A central component in this service graph is the dashboard service, which has the role of aggregating 

a number of inputs coming from both external sources as well as other FUSION services, and building 

a fancy interactive 3D GUI around this. In this version, the output of the dashboard is a raw video 

stream, which is fed to a scalable real-time video encoder and streamer service. This streamer 

service takes in the raw video stream and encodes this in real-time as an H.264 video stream, which 

is then streamed towards a connected client. To have an interactive service, the client can also 

forward input events over a feedback channel towards the streamer, which will forward them 

towards the dashboard service. Depending on the interaction pattern, the service may decide to 

forward events or create its own events towards its connected services, like in case of the EPG 

service that is connected to the dashboard service. The last key service is the real-world tagging 

service, which consists of basically two key services, namely the tagging service and the overlaying 

service. The tagging service requires a live video input stream to perform the tagging, which in this 

case is also coming from the client application of the end user. We will elaborate on the function and 

implementation of the individual service instances and the communication protocols in more detail 

in the following sections. 

It is important to note that in this service graph, the sources and the client (depicted in yellow boxes) 

are considered to be external to FUSION and thus are not running on top of FUSION infrastructure. 

Note also that in our demonstrator, each individual FUSION service component is deployed and 

running in its own environment, which is currently either a VM running on OpenStack or a native 

environment hosting the service. 

    

6.2.3 Initial communication protocol 

For the services to be able to interact, we agreed upon first versions of a few initial key 

communication protocols: 

• Streaming raw video in between the service instances 

• Feedback channel containing mouse and key input events for interactivity 

• Metadata channel for exchanging metadata (e.g., the tagging locations) 

We will discuss each of these protocols in more detail. 

Sources

Client

EPG Overlay

Streamer

Dashboard

Tagging Raw video

H.264 stream

Feedback

Metadata



D5.1 Use Case Requirements, and Initial Design Page 46 of 53
 

Copyright © FUSION Consortium, January 2014 

6.2.3.1 Raw video streaming protocol 

For the initial demonstrator setup, we are planning to use raw RGBA32 video streaming to be able to 

quickly connect and stream raw video in between the service components of the various partners. 

Because of temporary nature of the protocol, we will leverage the YUV4MPEG2 format [YUV13], 

which we send over a raw TCP/IP connection. We will extend the format to also support RGBA32-

based frames. In later iterations of the demonstrator, we will move towards more flexible and 

efficient communication protocols for exchanging video frames in between services (which may be 

collocated on the same physical machine and for which transcoding would result in too much 

overhead or latency issues). 

6.2.3.2 Feedback protocol 

For the feedback protocol, we will leverage portions of the RFB protocol specification [RT10], which 

is also used by VNC implementations for remote desktop sharing. We will only use the protocol 

messages for sending client input events (keyboard and mouse) towards the server application. We 

do not use the RFB protocol as primary protocol for raw video streaming, as this protocol is not 

suited for smooth raw video streaming, but is rather intended for incremental desktop GUI updates.   

6.2.4 2D EPG service  

For the first iteration of the demonstrator, we will leverage a basic 2D interactive EPG 

implementation that enables browsing through a number of dynamic or interactive video sources or 

static pictures, and that can easily be extended towards integrating the output from other FUSION 

services as well. This EPG service is developed in the Vampire framework [FV09], a media processing 

framework developed inside Bell Labs for quickly building media applications consisting of a number 

of reusable media components, each of which can be mapped onto a number of application threads. 

A snapshot of the basic EPG service is depicted in Figure 16. 

 

Figure 16: Screenshot of a 2D EPG service prototype 

For the initial setup, we will limit the EPG service to only consist of a fixed number of static input 

streams, together with a series of static images. The end user will be able to interact with the service 

either by pressing key strokes or mouse swipes to manually browse through the video sources. 

Alternatively, the user could also toggle the service to automatically scroll through all video sources. 

We will modify the basic implementation to support the basic raw video stream format as well as the 

RFB feedback protocol for handling all service communication as described above. We will also 

implement the service session slots concept into the initial implementation, allowing each EPG 
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service instance to handle a configurable amount of independent EPG sessions to be hosted in 

parallel. Using the underlying features of the Vampire framework, we will try to reuse all input video 

sources across all sessions using an internal Vampire multicast mechanism to significantly reduce the 

resource requirements. We will make the service instance fully parameterizable during instantiation, 

allowing to change the available parallel sessions, the output resolution, the endpoint port and the 

frame rate when a new instance is deployed. We will initially encapsulate this service into an 

OpenStack compliant virtual machine using an Ubuntu 12.04 64-bit server distribution as guest 

environment. 

6.2.5 Video streamer service 

The responsibility of the video streamer service is to transcode the raw video format coming from an 

internal FUSION service into an H.264 encoded video stream for streaming it towards external client 

applications. Vice versa, input events coming from the client application via a feedback channel will 

be forwarded to the FUSION service connected to the streamer service. The overall mechanism is 

shown in Figure 17.  

 

Figure 17: Schematic view of the streamer service 

For implementing this service, we will use the same Vampire framework as for the 2D EPG service. In 

the first implementation, we use software-based video encoding using ffmpeg [FFM13] and/or X.264 

[X13]. In the future, we envision integrating support for hardware accelerators for more efficiently 

encoding a large number of video streams in parallel, as real-time video encoding is very compute-

intensive. We will also implement the service session mechanism, enabling a preconfigured 

maximum number of streaming sessions in parallel, each of which will automatically connect to a 

preconfigured FUSION service. We will also provide an interface that enables dynamically changing 

the default input service to which the streamer will automatically connect when a new streaming 

session is initiated.   

We will make the streaming service instance fully parameterizable during instantiation as well as 

runtime, allowing to change the maximum number of parallel sessions, the available input FUSION 

service, the endpoint port, the video encoding format, frame rate and encoding quality when a new 

streaming instance or session is deployed. We will also wrap this service into an OpenStack 

compliant virtual machine using an Ubuntu 12.04 64-bit server distribution as guest environment. 

6.2.6 Real-world tagging service 

The tagging service will analyse video frames and detect known objects and/or faces. This service is 

realized by several components spread over two Execution Zones, as illustrated in Figure 18. 
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Figure 18: Recognition and tagging service components 

The H.264 video feed from the client application is decoded to raw frames. These raw frames are 

forwarded to the Recognition Proxy and the Overlay Renderer. The Recognition Proxy forwards one 

out of every N frames to the Recognition Service running in another Execution Zone. The parameter 

N is dynamically adjusted to bandwidth and latency towards the Execution Zone, or by application-

specific intelligence. For example, better recognition accuracy might be needed when this application 

is used for detection.  

The recognition service returns the position and size of the rectangle spanning any detected object in 

the frame. The Overlay Renderer will draw these rectangles on the original raw videos. The 

rectangles are drawn on the same position for each new raw frame received from the decoder, until 

the Recognition Service provides updated input. Finally, the raw video is being decoded and 

streamed back to the client. The streamer component has been detailed in the previous section. 

6.2.7 Dashboard service 

This section covers the FUSION services built using the Shark 3D platform, which is currently being 

transformed for enabling FUSION service deployments. 

6.2.7.1 Overview 

The dashboard service will be built on the basis of the Shark 3D platform of Spinor, which is currently 

being transformed for enabling FUSION service deployments. Shark 3D based service components 

will offer connection requests, so that other software (e.g. other services or client applications) can 

connect to the dashboard service. 

Technically such a particular service will be created visually using the Shark 3D authoring editor. In 

case advanced or special low-level features are required, Shark 3D offers Python and C++ APIs to 

implement custom functionality and integrate it both in the authoring editor and into the deployable 

run-time application. 

6.2.8 Input and output channels 

A main output channel is the render output. For example, the dashboard rendering is streamed to 

the client. Other output channels are also possible in principle transferring metadata, but usually not 

necessary. 
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A typical input channel contains input data from end-user input devices like mouse, keyboard, 

gamepad or other controllers. The user uses such input devices to interact with the 3D application. 

For example, it can be used to control the game or to interact with the dashboard. 

6.2.9 Defining session slots 

An extension of the Shark 3D platform we are creating for FUSION is the possibility to create a 

factory for session slots. In the editor such factories are called “producers”, see the editor screenshot 

below. This screenshot shows work-in-progress regarding the session slot implementation. Its main 

purpose is to define which functional components must be created for each session, for example a 

new unique 3D state and a rendering viewport which can stream the data to a TCP port. This is in 

contrast to shared data which must be created or loaded only once. 

The following screenshot displays nodes of a very early stage prototype defining a factory for FUSION 

service session slots. Each of the nodes is implemented by one or more C++ components providing 

part of the overall functionality. The aggregation and configuration of these C++ components based 

on the visual arrangement as shown in the screenshot is implemented in Python. 

 

 

Figure 19: Screenshot of a dashboard service slot definition prototype 
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6.2.10 Game service 

Similar to the dashboard service, also the game service will be based on the Shark 3D platform. A 

main output channel is the render output. For example, when using the Shark 3D service for 

implementing a game, the service streams the game render output to the client. Technically the 

game service is very similar to the dashboard service but with few differences, for example no need 

to have incoming video streams. 

6.2.11 Client applications 

We will develop a number of client applications for connecting and interacting with the FUSION 

demo services and for testing the communication protocols.  

• First, we will develop a prototype application for testing the raw video format as well as the 

feedback channel for the input events. This application will serve two purposes. First, it will act as 

a reference implementation of both protocols, being able to both generate as well as receive raw 

video frames using the protocol. Second, we will also be able to use it for directly communicating 

and interacting with the FUSION services, without having to chain that service to the streamer 

service first.  

• Second, we will also develop an initial client application that is able to decode and display an 

incoming encoded video stream coming from the streamer service, and also implements the 

feedback channel for interacting with the connected application.  

6.2.12 Service routing and forwarding 

A high-level scenario for this use case is depicted in Figure 20: Service routing/forwarding use case. 

Here, FUSION service routing configures service forwarding nodes taking into account the conditions 

(e.g., link utilisation or availability) in the IP network. Relevant metrics can be controlled in the 

experimental environment using Vyatta routers. Service requests are directed to different service 

instances located in different execution zones.  

 



D5.1 Use Case Requirements, and Initial Design Page 51 of 53
 

Copyright © FUSION Consortium, January 2014 

 

Figure 20: Service routing/forwarding use case. 

The use case aims at demonstrating the capabilities of service routing function in FUSION 

architecture. One particular goal is to validate the idea of achieving service quality by dynamically 

mapping clients to execution zones under the assumption that the routing at the IP plane is static, 

the service routing is controlled by the ISP, and is based on up-to-date network monitoring 

information. 

Execution zones in this scenario will be implemented using the infrastructure of both iMinds and 

TPSA. The service routing layer can be implemented in either the TPSA or iMinds testbed, but also 

PlanetLab will be considered.  
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7. CONCLUSIONS 

This documents provides an initial description of the use case requirements as well as an initial 

description and modelling of a selected number of use cases that we will use for building a prototype 

and for evaluating the FUSION architecture.  It also provides an overview of an initial set of test cases 

as well as a description of an initial demonstrator design that we are planning to build and that we 

will use as a starting point for implementing and evaluating key FUSION functionality in an agile 

manner.  

In the first year of the project, we have been focussing on the use cases and particularly the 

requirements of these use cases and how FUSION should or must handle these requirements when 

deploying services in the FUSION architecture. We also opted for an agile prototyping and 

development cycle for building the final demonstrators, starting implementing and integrating new 

functionality in an iterative manner, as this will enable us to identify design or scalability bottlenecks 

early in the design process, allowing us to adapt the design or the algorithms where needed. As the 

FUSION architecture covers many domains and layers, we believe this approach is crucial for building 

an agile, scalable and flexible infrastructure for managing and accessing demanding interactive 

services in a distributed fashion. 

In the second year of the project, we will continue working out the selected use cases in more detail. 

We will also start validating some of the requirements and designs by building targeted test cases. 

Third, we will make a plan for growing the initial demonstrator design into the final demonstrator 

design, and begin executing that plan, starting by integrating the various software components on 

the initial VirtualWall testbed environment and evaluating the key bottlenecks. 
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