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EXECUTIVE SUMMARY 

This document is a public deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 

project. It focuses on the algorithms, protocols and functionality of the service management and 

orchestration layer in FUSION, including the design and implementation of all the FUSION 

components implementing this service layer.  

The key challenges for this work package are twofold. A first challenge is how to build a composable 

and scalable service layer for efficiently managing large-scale personalized services across distributed 

heterogeneous execution nodes. A second challenge is developing efficient and scalable service 

placement and scaling algorithms for optimally deciding on when and where to deploy particular 

service components, based on service demand, service requirements and platform capabilities. 

The service management layer is conceived as a set of orchestration domains. In each orchestration 

domain, there is a logically centralized domain orchestrator where service providers can register and 

manage their services, and where services are globally managed within a domain. This includes the 

high-level placement and scaling of the services in the various execution zones that are managed by 

the domain. Each execution zone is managed by a FUSION Zone Manager, which handles all local 

deployment, monitoring, load balancing and scaling management. This decoupling ensures a scalable 

service layer in which all local management details are handled locally and all global decisions are 

made at the domain level.  

Within an execution zone, we also distinguish between the higher-level FUSION management and 

orchestration and the lower-level deployment and management of service instances on either 

physical or virtual resources. In FUSION, we envision that FUSION Zone Managers could be deployed 

on either bare physical environments or on cloud infrastructures, which may be managed by a third 

party. The former type allows for a much higher and finer degree of control of the underlying 

resources but requires direct access and low-level management of FUSION. The latter type allows 

FUSION to delegate most of the lower-level deployment details to the underlying cloud platform, but 

obviously allows for less fine-grained control. To be able to abstract this varying degree of control 

and low-level management, we designed a Data Centre Adaptor layer, to clearly distinguish the 

higher-level FUSION zone management functions from the lower-level deployment functions. 

This deliverable is the second public Deliverable for Work Package 3, and extends and refines the 

various concepts and initial design and high-level protocols that were described in Deliverable D3.1. 

The deliverable contains three main parts. The first part covers the overall vision, concepts and 

algorithms of FUSION orchestration and management, starting with a description of higher-level 

patterns, challenges regarding heterogeneous environments and a discussion on composite services, 

presenting a new concept on multi-configuration service instances. We then provide an update and 

present new algorithms for the key FUSION orchestration functions, including service lifecycle 

management, placement and scaling.   

In the second part of the deliverable, we provide a more detailed design of the three FUSION 

orchestration layers, and discuss in detail their current implementation status. We also discuss how a 

heterogeneous cloud platform could be designed onto which FUSION services and FUSION execution 

zones could be deployed, optimizing both QoS and overall efficiency. At the end of this part, we 

discuss the FUSION orchestration protocols (which are described in more detail in the Appendix), as 

well as discuss different inter-service communication protocols to enable efficient inter-service 

communication within an Execution Zone. 

In the last part of this deliverable, we then present specific evaluation results of particular FUSION 

concepts (such as multi-configuration instances), placement algorithms and enabling technologies 

(such as lightweight virtualization, NUMA-pinning and real-time guarantees). 
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In the final year of the project, we will extend the algorithms, functionality and implementation of 

the FUSION service management layers for dealing with more complex service patterns, specifically 

with respect to composite services. Secondly, we will continue integrating and extending our work 

on heterogeneous cloud environments for efficiently managing both services and resources in a 

distributed heterogeneous environments. This will result in an integrated prototype that will be 

evaluated as part of WP5. 
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1. SCOPE OF THIS DELIVERABLE 
This deliverable focuses on the service management layers of the FUSION architecture: the 

orchestration layer, the execution layer and the service layer. This deliverable extends and refines 

the various concepts, designs and APIs as described in the previous Deliverable D3.1.  

An overview of the key contributions w.r.t. D3.1: 

• We describe a number of fundamental patterns for distributed service orchestration and discuss 

their role with respect to composite services; 

• We describe key challenges and opportunities with respect to heterogeneous execution 

environments for efficiently deploying demanding or time-sensitive applications; 

• We elaborate on the two main types of composite services we focused our research on during 

the second year of this project, and we introduce a new concept in FUSION for efficiently 

overlaying multiple services on top of particular service component instances; 

• We discuss how FUSION can leverage and extend TOSCA for automatically deploying and 

managing demanding services in a distributed heterogeneous environment; 

• We provide an update on the key FUSION orchestration functions and their corresponding 

algorithms, including monitoring, lifecycle management, placement and scaling; 

• We provide a second iteration of the design of all FUSION orchestration layers and discuss the 

current status of their implementation: a FUSION domain orchestrator, zone manager, DC 

adaptor and underlying heterogeneous cloud platform. 

• We provide details on the FUSION orchestration protocol specifications design and 

implementation, as well on various inter-service communication protocols for efficiently 

communicating across instance components, describing and comparing various components; 

• We provide evaluation results regarding various enabling technologies and algorithms, including 

experimental results on the potential of a heterogeneous cloud environment and the impact of 

service placement algorithms. 

In the last year of the project, we will focus on the following aspects: 

• Work out and extend the key FUSION MANO functional blocks and algorithms for coping with 

more complex patterns regarding composite services, scaling and placement; 

• Extend the prototype implementations of each FUSION layer, breaking them up in the key 

functional blocks and finalizing their internal protocol specifications; 

• Continue work and integration of heterogeneous cloud environments for efficiently deploying 

demanding services on various hardware infrastructures and platforms. 
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2. FUSION ORCHESTRATION AND MANAGEMENT 

This section provides a detailed update of the various key enabling FUSION concepts, functionalities 

and algorithms for efficiently orchestrating and managing demanding real-time personalized media 

services in a distributed heterogeneous cloud environment. 

2.1 Patterns for distributed service orchestration 

From the FUSION perspective, orchestration of distributed services has several dimensions or 

aspects, and each dimension introduces a different class of problems to solve. It is assumed that for 

each such dimension one can provide a set of specific solutions that tend to be repeatedly used in 

practical situations. We refer to them as patterns. 

The main reason to define these dimensions and identify underlying patterns is to expose inherent 

complexity of service orchestration and enable a pragmatic approach to designing orchestration 

procedures. For example, we note that of great importance to FUSION is optimal orchestration of 

services. We believe in particular that designing specific optimisation models for individual, 

commonly used patterns may be a viable way to solve related problems in practice.  

Presented in next subsections is a list of main dimensions and exemplary patterns of FUSION 

orchestration. It must be stressed that FUSION adopts an incremental approach in defining such 

patterns. Therefore it is not our goal to provide an exhaustive specification of patterns in this 

document nor even throughout the duration of the project. However, we note that selected 

patterns, identified based on the use cases being developed within the project, are elaborated in 

more detail in other sections of this document. One of the goals of the final year of the project is to 

identify and work out additional patterns, specifically in the context of composite services. 

2.1.1 Service scaling and placement 

This dimension deals with the problem of how scaling decisions related to service instances are taken 

and what the scope is of scaling decisions. We distinguish three different aspects of service scaling as 

outlined in the remainder of this section. 

Service scaling triggers. This aspect relates to the reasons and goals that underlie the decisions to 

scale services. In this context we identify two canonical patterns as follows: 

• Performance degradation due to lack of reserved resources (scaling up needed) or reserved 

resources available in excess (scaling down needed) under apparently stable demand. In this 

case the goal is to allocate infrastructure resources to service instances while maintaining 

current capacity of the service in terms of the amount of session slots the service offers to the 

users (either globally or in certain areas, or based on yet another criteria). Its importance for 

FUSION may be explained by the fact that due to the demanding nature of services and the 

scarcity of resources in smaller DCs close to the edge, it is advantageous to minimize the amount 

of reserved resources. This pattern may apply to both atomic as well as composite services. 

• Increased or decreased demand and respective performance degradation or over-performance 

of the service. In this case the goal is to adjust service capacity in terms of the amount of 

available session slots and keep it within reasonable limits. It has to be noted that the potential 

importance of this pattern relates to the fact that in a distributed environment such as FUSION, it 

is not so easy or cost-effective to have enough instances up and running in all necessary locations 

(compared to central cloud). As a result, FUSION may need to quickly scale up in particular 

locations based on unpredicted demand. Indeed, due to partitioning of services across DCs, the 

statistics become harder to use for the long-tail of less-popular services. This pattern may apply 

to both atomic as well as composite services. We note also that the exact way to achieve the 

above goal will depend on the multiplexing pattern (see Section 2.3.2) that is implemented by 

the service.  
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Scope of scaling action. This aspect relates to the scope of service scaling determined by the type 

and number of locations across which scaling takes place. Currently we define two scaling patterns as 

follows: 

• Local scaling (scaling at the execution zone level). This is a simple pattern that can easily be 

combined with other patters like the ones defined for reasons and objectives of scaling. In the 

latter case it can thus generate a compound local pattern based on local performance criteria to 

maintain session slots or based on demand. 

• Wide-area scaling across multiple execution zones. It typically involves adjustment of service 

instances to align the amount of available session slots with demand coming from a particular 

region, possibly meeting given performance and/or other constraints. This specific variant can 

also arise when the scaling of particular component(s) of a composite service, done 

autonomously at the execution zone level (see above), mandates to also scale other component 

instances of affected composite service instance. From this latter example we observe that 

scaling patterns can sometimes be chained to generate sequences of related scaling actions. 

Such complex chains may in fact deserve specific treatment as individual (complex) patterns. 

Interaction patterns. This aspect is related to different functional elements of the overall FUSION 

architecture that can undertake scaling actions. As scaling may require cooperation between those 

functions, interaction patterns between them can be defined. So far, we have identified three 

following interaction patterns:  

• Orchestrator-initiated scaling - scaling decision is taken by the orchestrator based on either 

(objective) criteria for scaling based on native DC-level measurements or (subjective) criteria 

provided by the service or service components based on internal (proprietary) measurements. 

• Service-initiated scaling – scaling decision is explicitly requested by the service based on (possibly 

specific) measurements done by atomic service components. 

• Agent-initiated scaling – from the orchestrator perspective similar to service-initiated scaling but, 

compared to the service itself, potentially providing additional degree of flexibility in terms of 

sophistication of interactions with other platforms components (orchestrator, zone manager, DC 

manager). 

In case of orchestrator-initiated scaling, the role of the orchestrator is both to decide whether the 

performance criteria for a scaling action are met, evaluate the desired new configuration of the 

service including such aspects as placement of new components, as well as authorize the scaling 

action to assure that it complies with policies and other functional requirements that may apply. In a 

service-initiated scaling pattern, the service instance triggers the FUSION platform by issuing a 

scaling request and provides information describing the desired new configuration of the service. 

Placement. In general, placement of service instances involves the use of algorithms and from this 

point of view placement is a result of certain optimizations rather than of applying a repeatable rule 

that defines a pattern. However, we note that FUSION introduces the concept of an evaluator service 

as a means for the orchestrator to collect information describing the capabilities of DC environment 

to execute service of a given type. We believe the use of evaluator services for orchestration 

purposes opens many possibilities for research and may give rise to the creation of patterns that will 

define best orchestration practices with the use of evaluators. This topic will be studied in more 

detail during the next period of the project. 

2.1.2 Plans (work-flows or choreographies)  

This dimension is intended to capture the dynamic aspects of a composite service structure (or 

topology) during execution. The goal is to provide the orchestrator with knowledge about dynamic 

behaviour of services that can be used in taking optimal orchestration decisions related, e.g., to the 

placement of atomic instances of composite service components. 
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From a FUSION perspective, an instance of a composite service is a collection of atomic instances, 

which evolves in time in two dimensions: as atomic instances join and depart the composite 

instance, and as they set up and release communication sessions with other atomic instances during 

the service instance lifetime. In general, such evolution is a choreography or execution plan that can 

be expressed using appropriate notation to capture the desired features of service evolution. 

A simplest example of plan pattern is when all atomic instances of a composite service and all 

required communication sessions are instantiated (terminated) when the composite service instance 

is created (respectively, terminated); in this case the orchestrator has full knowledge of the service to 

figure out its optimal instantiation even if the graph of the service is arbitrary (star, tree, mesh, etc.). 

Another pattern where close-to-optimal orchestration is possible is a star topology where a root 

atomic instance created at service instantiation time communicates with leaf instances and the leaf 

instances (and corresponding communication sessions) are created in predefined time instants and 

last for a predefined time. Note that randomized variants may be derived from the latter 

deterministic pattern by randomizing its selected parameters, e.g., the creation time of the leaf 

instances and/or the duration of corresponding communications session. In either case, the 

orchestrator has less information on the actual execution of the composite service instance but still 

can try to figure out suboptimal decisions. Note also that in a worst case it is always possible to 

project a given pattern onto the simplest (static) variant. This approach can be treated as default, 

available to all orchestrators. 

It must be stressed that at current stage, plans are assumed to represent only the external view of 

composite services. That means in particular that plans do not describe the internal use of 

communication channels represented in the service graph. In other words, plans do not define 

different end-to-end flows that may traverse such channels and the (logical) paths such flows may 

take among the service components of composite service. The plans do not deal with the 

functionality, configuration and state of service components to map such flows onto an instantiated 

service graph. There is a strong similarity of plans to the concept of VNF Forwarding Graphs 

discussed within the framework of NFV [ETSI13]. 

We conclude pointing out that FUSION plans may correspond to TOSCA-defined plans. It is believed 

that a set of basic plans (e.g., the two mentioned above in this section) can already be supported by 

the many notations allowed by TOSCA. However, FUSION may introduce specific behaviours and thus 

require enhanced notation and respective platform mechanisms that enable the description and 

realization of related patterns. We leave the latter for further analysis when explicit needs arise for 

such extensions. 

2.1.3 Service overlaying  

A basic and simple scenario for the realization of a composite service is to assume that each atomic 

instance of such a service responsible for a subset of functionality is realized in the form of a stand-

alone virtual machine. In case of such one-to-one mapping the orchestrator has a clear view of 

service instances both on the level of atomic instances as well as composite service instances. 

Despite its simplicity, this option may however lead to a poor use of infrastructure resources, 

especially in case the services are scattered across many small data centres. 

A possible workaround to the above problem is extending the capabilities of atomic service 

components so that a single component instance can support multiple instances of the target service 

(multiple service sessions each corresponding to a distinct user). From the functional point of view 

this is equivalent to overlaying atomic component instances of the target service onto the instances 

of hosting service components. Of course it will be up to the particular implementation of the 

FUSION platform (orchestrator and zone manager in particular) what its actual awareness is of such 

overlaying capability and what the allowable patterns are for orchestrating respective composite 

services. Nevertheless, it becomes clear from the discussion that, from the theoretical point of view, 

two canonical orchestration patterns can be defined as follows: 
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• single-service component pattern when one atomic service component can realize only one 

instance of atomic service (the latter being a component of simple or composite service); 

• overlaid multi-service patterns when one atomic service component can realize multiple 

(distinct) instances of atomic service and the orchestrator may play a double role to orchestrate 

both the hosting. 

Concluding the above discussion on service overlaying we note that the overlaid multi-service 

pattern is important for services considered in FUSION such as the EPG service. As such, the different 

aspects of service overlaying and multiplexing will be discussed in greater detail in Section 2.3.2.  

2.1.4 Service forwarding graphs 

This dimension deals with the problem of configuring the atomic component instances of a running 

instance of a composite service so that the internal flow of information (so to say, routing “inside” a 

service instance) complies with predefined requirements of the supported application.  

In fact, this functionality complements plans and guarantees that end-to-end (application-level) flows 

handled within service instance take appropriate paths (traverse appropriate atomic instances in 

order). This functionality thus deals with the configuration and state of service components to map 

such flows onto instantiated service graph. Such a service graph can be treated as a virtual network 

with nodes in the form of atomic instances and links in the form of communication sessions between 

such instances. 

We note that such requirements may be very diverse, e.g., they may relate to different protocols 

(layers) including application protocols, and even to whole protocol stacks in a general case.  

Therefore it is hard to provide a generic mechanism that would cover all cases as they are inherently 

related to the patterns of internal communication at the application level. 

2.2 Challenges and opportunities of a heterogeneous environment  

This section covers the key challenges and opportunities of a heterogeneous cloud environment for 

managing demanding workloads, services and network functions. 

2.2.1 Motivation 

One of the key drivers for (public and private) cloud is the promise of providing potentially large 

operational gains for service and infrastructure providers, by being able to automatically deploy and 

manage services (using a single common orchestration platform) on COTS general purpose hardware 

(allowing consolidating of available hardware resources across all services). As depicted in Figure 1, 

this works well for standard IT services such as Web services, NoSQL data bases, etc. Apart from 

standard IT services, operators are currently also investigating the potential for cloud for network 

functions (e.g., IMS, etc.) in the NFV consortium [OPNFV], where the initial focus was on defining a 

common architecture for deploying (control plane) network functions.  

 

 

Figure 1 – In future cloud, not only operational benefits will be important 
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However, for more demanding workloads or bearer plane functions as FUSION is also targeting, not 

only the operational aspects are important, but also the overall efficiency and QoS of those 

applications and services. For such applications, deploying them agnostically on a general purpose 

cloud, not taking into account the service requirements and infrastructure capabilities and 

limitations, may not result in a overall TCO reduction due to reduced overall quality and 

performance. This is shown in Figure 2, where the impact on the operational benefits and overall 

efficiency is depicted of cloudifying demanding services on an agnostic general purpose cloud. Note 

that the horizontal axis in this graph could be loosely regarded as OPEX reduction, whereas the 

vertical axis loosely represents CAPEX reduction. Consequently, the diagonal represents TCO 

reduction. 

 

Figure 2 – Trade-off between operational benefits & efficiency when virtualizing and cloudifying 

demanding services on unknown COTS hardware and software infrastructures 

The process of cloudifying (existing) demanding workloads typically consists of three key steps: 

1) First, as demanding services are currently often deployed on special-purpose hardware, a first 

step is to modify these services to run onto COTS hardware. Although this may already provide 

some operational benefits (i.e., consolidation of less expensive hardware), a potentially large 

impact in relative performance and/or quality may be noticed, as the COTS hardware is by far not 

as efficient as the specialized hardware. 

2) The second step typically involves adding a virtualization layer and deploying the applications on 

known COTS hardware. Knowing the environment and infrastructure allows the service provider 

to keep the reduction in efficiency to a minimum, while gaining additional operational benefits 

by allowing multiple services to be deployed on the same physical infrastructure (i.e., 

oversubscription of physical resources), as well as having a common packaging and deployment 

platform (i.e., virtualization layer). 

3) The last step is to integrate the virtualized service in a fully automated cloud environment, 

adding proper management services, manifests etc. to enable auto-deployment, auto-scaling and 

auto-healing capabilities. This will again provide significant operational benefits, whereas the 

impact on efficiency heavily depends on the underlying cloud infrastructure and policies. 

In summary, these three steps may induce significant relative operational benefits, however at the 

expense of potentially large reductions in relative efficiency for demanding and/or sensitive 

applications or network functions. In the end, this may even result in a higher TCO when moving to a 

cloud solution instead of a dedicated solution. 

Consequently, for such applications (and network functions) to be cost-efficient in a automated 

cloud environment, we envision a heterogeneous cloud environment, taking into account the 
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application requirements and the HW/SW platform characteritis, and automatically tuning the 

software platform and hardware infrastructure based on these requirements and the underlying 

capabilities and limitations.  

We also envision in FUSION that these (heterogeneous) cloud environments, apart from being 

distributed, in the future also will consist of novel hardware infrastructures such as micro-servers 

that are designed for energy efficiency, as well as hardware accelerators for regaining some of the 

performance efficiency losses from using general purpose hardware only. In summary, we foresee 

several key opportunities and challenges regarding a cost-efficient deployment of such services in a 

heterogeneous environment, on which we elaborate in the next section. 

2.2.2 Challenges 

Due to the characteristics and requirements of demanding and/or time-sensitive applications, 

deploying them on general purpose hardware in modern cloud environments introduces a number of 

nontrivial challenges and opportunities, both from a software as well as a hardware point of view. 

• Understanding the underlying hardware infrastructure 

Both at the application layer as well as the cloud management layer, it is important to 

understand the properties and complexities of the underlying hardware infrastructure. This 

includes understanding how to cope with particular cache hierarchies and their respective sizes, 

how to deal with NUMA configurations and other aspects that may significantly impact efficiency 

and how to handle hardware acceleration from a resource planning and application  perspective.  

A key challenge is how to enable this in a cloud-friendly manner. For example, manually pinning 

applications onto NUMA nodes may result in a fragmentation of the resources with 

corresponding fragmentation overheads. Also, oversubscription can negatively impact 

application performance, resulting in reduced QoE and reliability. 

• Understanding the software platform 

A second major challenge is how to cope with multiple abstraction layers, like virtualization, 

platform APIs, etc., as well as understanding an application’s behaviour and its runtime 

requirements. These layers abstract the hardware infrastructure and simplify deployment and 

management of applications and increase the resource consolidation across more applications. 

Unfortunately, performance and performance predictability are very hardware dependent, and 

for some application classes, ensuring proper operation and QoE requires guaranteeing 

particular (minimal) levels of performance. Consequently, understanding the impact of a 

particular abstraction layer on a particular hardware infrastructure is a first step for ensuring 

proper QoS levels.  

• Guaranteeing QoS 

A third key challenge related to deploying a real-time application on general purpose hardware 

in a cloud environment is how to guarantee proper QoS levels [BONI10], or vice versa, what QoS 

levels an application can expect from such an environment, and what the platform needs to 

provide for guaranteeing these QoS levels. A concrete example is how a multi-tenant cloud 

environment could guarantee a particular minimum amount of memory bandwidth to a 

particular application. Current multi-tenant virtualization and isolation mechanisms fail to 

guarantee such fine-grained QoS levels. However, for particular types of applications, such fine-

grained control is essential for guaranteeing proper execution and QoS.  

As mentioned earlier, we envision future (distributed) data centres to be heterogeneous in nature, 

consisting of different physical hardware architectures, including novel DC infrastructures and 

models such as micro-servers, server disaggregation as well as the incorporation of hardware 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 18 of 136

 

Copyright © FUSION Consortium, 2014 

accelerators such as GPUs and FPGAs. Such heterogeneity however introduces a number of 

additional challenges: 

• Management and configurability 

As we will show in Section 4.1, efficient usage of hardware acceleration in a virtualized 

environment greatly complicates the overall configurability of a system: many specific 

configuration parameters need to be applied for the entire system to collaborate in an optimized 

manner. Since the benefits can be huge, a key challenge is how to control and reduce the 

management and configuration complexity of such complex systems. 

• Programmability 

Introducing specialized hardware appears to contradict with one of the core philosophies of 

cloud, namely that applications should be able to run everywhere without caring about the 

underlying platform. Hey, if one VM does not seem capable of handling all the load (due to 

additional virtualization overhead), then just simply scale out and launch another one, right? 

Although this may be sufficient for particular classes of applications, we claim that for more 

demanding or time-sensitive applications, simply scaling out is not always an option, and 

hardware acceleration is inevitable for cost-efficiency or performance reasons. For several 

reasons, these hardware accelerators should preferably be either fixed functions that can be 

leveraged for a wide range of applications (e.g., video encoding function), or general purpose 

accelerators (e.g., GPUs, FPGAs, etc.) that should be programmable and configurable via 

standard APIs (cfr. OpenCL), preventing cloud environments from becoming dedicated hardware 

platforms. Vice versa, this promotes developing applications that can be deployed efficiently on 

different types of cloud infrastructures with different types of hardware acceleration (if any). 

A second challenge is developing proper programming models for efficiently programming 

heterogeneous devices in a cloud environment. Although standards like OpenCL exist and 

provide a common hardware abstraction layer and unified programming model, there are some 

important limitations. First, OpenCL has a limited scope by focusing on massively parallel high-

performance applications. Second, OpenCL was mainly designed for HPC or grid environments 

rather than cloud environments, assuming a single-tenant system with full visibility and control 

over all available hardware accelerators. Third, OpenCL does not provide any performance 

abstractions. This means the application developer has to provide specific implementations for 

specific devices (and even device models), which can be very costly or impractical when these 

applications are to be deployed in a cloud environment, where the set of accelerators may not 

be known in advance. 

• Automation and optimization 

One of the core aspects of cloud computing is the ability to automate the deployment and 

management of the hardware infrastructure as well as the applications that are deployed on that 

hardware. Managing accelerated applications on a heterogeneous set of hardware significantly 

complicates this automation process, having to take into account the different hardware ratios of 

the available systems (e.g., a low-power high-storage versus a high-performance low-IO system).  

On the one hand, the cloud management layer needs awareness of the heterogeneity of 

resources, as well as awareness of resource utilization factor, etc. of new and specialized 

resource types.  On the other hand, it needs to optimally map the various applications on the 

hardware infrastructure as well as assign and configure the selected accelerators to the 

respective applications or their VMs. To automate this, the cloud resource manager needs to 

know which accelerators are required or preferred by a particular application. The application 

needs to provide this information statically or dynamically in a preferably standardized manner 

to allow interoperability between clouds. (e.g., as part of their TOSCA description or through 

FUSION evaluator services).  



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 19 of 136

 

Copyright © FUSION Consortium, 2014 

This raises the question on how applications will describe their affinity or dependency towards 

particular types of hardware accelerators. A strict dependency (e.g., a specific GPU model) may 

severely limit the deployment flexibility. In case of weak dependency, the cloud orchestration 

may assign a hardware accelerator to an application yielding suboptimal service quality or 

efficiency.  

A third key challenge is how to automate the dependency formulation and how the interface 

towards the applications would look like. In FUSION, we propose the concept of evaluator 

services for solving this issue in a very flexible dynamic manner. 

• Economics of scale 

One of the key drivers of cloud computing concerns the cost advantages that arise from 

deploying services in large data centres with mass-production general purpose hardware.  A 

major potential pitfall when introducing hardware accelerators in such environments is that the 

performance benefits from the accelerator may be counterfeited by the cost of owning and 

managing that accelerator. Consequently, the economics of scale should also apply here: these 

accelerators should be mostly COTS hardware that can be deployed in relatively large volumes 

across multiple data centres and that can be programmed via specific APIs or programming 

models and that also can be consolidated across many application domains. Examples types of 

accelerators include GPUs, FPGAs, etc. 

• Migration  

Introducing heterogeneous hardware significantly complicates and constrains VM or application 

migration from one hardware system to another [PITT07]. At the coarse-grain level, it is not so 

straight-forward to efficiently migrate a VM running on a x86 system onto an ARM system. At the 

fine-grain level, applications may rely on specific hardware acceleration (e.g., AVX instructions, or 

a specific GPU) and may either fail hard or perform very badly when being migrated to another 

system at any point in time. Moreover, these accelerators often contain active application state 

that needs to be migrated and that  is not visible to the hypervisor when that device is passed 

through to the VM. Non-application assisted migration of applications or VMs using specialized 

hardware in pass-through mode thus is currently hard to accomplish.  As such, migration should 

be handled differently in such heterogeneous environments. 

2.2.3 Opportunities 

In this section we list a number of key opportunities towards more cloud-friendly optimization 

strategies.  

• Reducing friction between applications and their environment 

Applications often have specific requirements, not all of which are often understood or identified 

in advance, and the environment is typically not optimized for these requirements. Even on 

dedicated environments, this results in time-consuming optimization cycles to try to better 

match the application to its environment, or vice versa. Deploying these applications in a 

particular environment causes friction. In cloud environments, techniques like elastic scaling are 

typically used to partially circumvent the impact of this friction. In heterogeneous cloud 

environments, a key question is how to optimally map an application onto particular hardware. 

This may require proper knowledge of key application requirements, the hardware topology and 

capabilities as well as the interference of one application onto the other in case of multi-tenancy, 

all of which needs to be taken into account by an advanced placement algorithm.  

Alternatively, another interesting research question is how applications, hardware 

infrastructures or even execution models could be improved to reduce the amount of friction a 

priori.  
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For a particular infrastructure, the amount of friction can be reduced even further by carefully 

tuning how an application is deployed onto the available infrastructure. This may require 

improving the operating system, hypervisor as well as cloud management platform in several 

ways. In Section 4.1, we illustrate the benefits of reducing this friction manually. Obviously, in a 

cloud environment, this process should be fully automated, and should have self-monitoring and 

self-healing capabilities for timely error-recovery. 

We envision a solution where a cloud management platform like OpenStack could take in the 

application requirements on the one hand and the infrastructure capabilities and limitations on 

the other hand, and performs an intelligent mapping, either based on a number of rules, policies 

and heuristics, or through a series of incremental feedback driven optimizations.  

• Reconciling heterogeneity with cloud 

Introducing true heterogeneity in the cloud may significantly complicate management of 

applications and hardware resources. An important research question is what the practical limits 

in terms of heterogeneity are with the current cloud model: how much heterogeneity can be 

tolerated without radically changing the core principles of cloud computing. A key driver here is 

the consolidation of these accelerators of heterogeneous hardware across as many applications 

as possible. Vice versa, there may also be other cloud hardware or software models that do not 

suffer from these limitations and for which heterogeneity is a necessity rather than a burden. 

• Guaranteeing QoS 

As discussed earlier, particular applications have more stringent requirements than the best-

effort approach offered by modern cloud environments. Efficiently dealing with such applications 

requires advances at all layers of the stack, from the hardware layer all the way up to the 

application layer. The hardware layer could provide more fine-grained performance isolation, for 

example by adding hardware support, or by introducing new hardware models that enable finer 

partitioning of the hardware resources amongst applications, reducing the need for multi-

tenancy and resource sharing. The OS and hypervisor layers could better map applications onto 

specific hardware infrastructures and have better support to monitor and handle performance 

issues. For example, when a VM exceeds its requested memory bandwidth quota, the hypervisor 

or OS could temporarily suspend that VM, preventing the VM from starving other memory-

intensive VMs on the same system.  

These QoS requirements could either be specified in a more detailed manner by the applications, 

or the platform should be able to extract these lower-level requirements automatically, based on 

a number of higher-level application requirements specified by the application developer. Finally, 

the cloud management layer should take into account the QoS requirements of the applications 

and the specifications of the hardware to efficiently map and monitor these QoS-sensitive 

applications running in the cloud. 

• Relaxing the fixed hardware ratio 

A fundamental problem with modern hardware infrastructures is that each server blade basically 

has a fixed hardware configuration with an associated fixed hardware ratio: a particular amount 

of CPU power with a particular amount of memory, networking, storage, etc., which inevitably 

results in a partitioned system. In a multi-tenant (heterogeneous) cloud environment, 

applications are bin-packed on that hardware, eventually resulting in unused and therefore 

wasted resources and possibly bad application QoS. Moreover, application requirements often 

change over time, so the optimal hardware ratio may also change over time.  

One interesting solution would be to relax this fixed ratio and allow the cloud management 

system to define the hardware environment for a particular application dynamically according to 

the application requirements. This may result in higher application efficiency, stability as well as 
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better consolidation of available resources, thereby also reducing the amount of friction 

between the applications and their environment. 

• Creating pro-active tools and quality metrics 

More advanced tools as well as key quality indicators (KQIs) are required to assess application 

and system behaviour dynamically. This may involve automatically identifying the necessary 

performance metrics that are relevant for a particular workload set, correlate all metrics as well 

as predict future behaviour (e.g., based on past application behaviour [SHER02]), identify the 

culprit (e.g., memory interference between applications) and feed this information to the cloud 

management system. 

• Embracing emerging hardware technologies 

New emerging hardware technologies like graphene transistors [DURA13,  LIN08, MALK12 ], 3D-

stacking and memristors may drastically change the landscape of how compute nodes should be 

designed and applications should be developed, which in its turn may also radically change the 

current cloud models as we know them today. 

2.2.4 FUSION perspective 

In FUSION, we address some of these issues in a number of ways. First, we introduced already the 

concept of evaluator services in combination with matching placement algorithms for efficiently and 

flexibly taking into account service-specific and hardware-specific requirements, by allowing services 

to make a thorough fine-grained assessment of the capabilities of all environments within and across 

execution zones. 

However, these evaluator services can only detect and query what capabilities a particular 

environment has to offer. Additionally we also envision a heterogeneous cloud platform (underneath 

a zone manager) that can provide these more optimal environments for particular applications so 

that they can make effective use of these low-level optimizations. These tunings may include better 

resource isolation, pinning, providing particular accelerated functions, etc. In other words, both the 

service layer as well as the infrastructure/platform layer can both optimize according to their 

respective criteria.  

Service quality in FUSION is handled through a combination of various mechanisms. From a service 

layer perspective, the session slots provide an excellent metric for expressing how many sessions a 

particular service instance can deliver at any moment in time on a particular environment. For 

example, if a service instance detects problems with respect to the underlying resources (e.g. due to 

resource contention), it can reduce the number of available session slots, compensating for these 

issues. In worst case, it can reduce the available session slots to zero, forcing the FUSION load 

balancer to use other instances within the zone or even coming from another zone. On a longer time 

scale, the evaluator service can easily take into account historical data from previous runs of a 

service in a particular environment to assess the number of slots (if any) that such environment can 

deliver for that service with proper QoS.  

From an infrastructure and platform perspective, an infrastructure provider may have incentives for 

providing proper QoS towards particular services to avoid revenue loss to other infrastructure 

providers. A heterogeneous cloud platform that can balance the service provider and infrastructure 

provider expectations through appropriate optimization and tuning can result in a significant 

differentiating advantage. 

Lastly, we also envision that FUSION could provide particular FUSION service APIs for improved 

integration and acceleration of specific functions. For example, as we will discuss in Section 3.7, 

different inter-service communication channels can have a significant impact on bandwidth and 

latency characteristics. Some FUSION execution zones implementing some of such capabilities could 

provide them via a standard API, shielding the services from the lower-level details. Different zones 
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could have different offerings, which could be detected by the service, for example through the 

evaluator services. 

2.3 Composite services 

2.3.1 Overview 

In Deliverable D3.1, we described a wide range of possible variants of service graphs, related services 

and service instance graphs, ranging from the description and instantiation of static service graphs 

over template service (instance) graphs, to fully dynamic service instance graphs. 

As a reminder, an overview of the various terminology is depicted in Figure 3. 

 

Figure 3 – Key FUSION composite service terminology 

We clearly distinguish services from service instances. Services are the abstract representations of 

particular workloads and can consist of one or more service components, resulting in an atomic 

service or composite service, respectively. Each service component provides part of the functionality 

of the overall service and can either be reused across multiple services or can be deployed across 

multiple execution zones. A composite service consists of a (static) service graph, defining the 

relationship between service components that are expected to communicate for implementing the 

overall service functionality.   

Service instances on the other hand are runtime instantiations of the corresponding abstract service 

specifications. One service can be instantiated any number of times, resulting in potentially large 

number of service instances of that service. Similarly to services, the instances consist of one or more 

service component instances, resulting in either atomic service instances or composite service 

instances. These composite service instances have a service instance graph that indicates the 

connectivity between various service component instances in the instance graph. This graph can be 

either static or dynamic in nature, meaning that the topology and corresponding connections either 

remain constant throughout the lifecycle of the service instance, or can change during the lifecycle of 

the service instance, involving different service component instances and connections at different 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 23 of 136

 

Copyright © FUSION Consortium, 2014 

moments in time in the lifecycle of a specific service instance. In such scenario, different service 

instances can have radically different dynamic service instance graphs. 

Of all possible variants, we decided to focus on two key types of composite services this year: 

• Static service graphs 

In this case, the topology of the service is static and described in a TOSCA manifest (see Section 

2.4.1). Although the different service components of such composite services could be deployed 

in a distributed manner across multiple execution zones, we decided to focus first on deploying 

such composite service within a single execution zone. Future work includes investigating how 

our placement and deployment algorithms and strategies need to be extended for placing and 

deploying composite services in a distributed manner across multiple execution zones. 

• Dynamic service instance graphs 

In this variant, the graph is constructed after instantiation of a service, in which case the service 

components can (dis)connect to other service components dynamically. Note that this variant is 

complementary to the static service graphs, meaning that multiple static service graphs can also 

dynamically form larger dynamic service instance graphs by connecting to each other at runtime. 

We envision two key approaches on how instance graphs can be constructed at runtime: 

• Via FUSION service resolution  

We envision that a very natural and powerful way for creating dynamic instance graphs in 

FUSION is for FUSION services and service components to take advantage of the existing 

FUSION service resolution capabilities. For example, when a service X wants to make use of 

service Y, it uses the FUSION client API for requesting the FUSION resolution plane to find an 

optimal instance of service Y, possibly even relying on FUSION to automatically deploy a new 

instance of Y when no appropriate instance exists or has available slots. 

FUSION service resolution can be used in two ways, namely a simple and a more complex 

scenario. In the simple scenario described, individual service instances independently use 

FUSION service resolution for finding their optimal neighbour. For example, service X finds an 

optimal instance of Y, and Y finds an optimal instance of Z. Apart from being quite simple, a 

possible disadvantage of this method is that only the connections in between two 

neighbouring service instances are only piecewise optimized. Depending on the overall 

functionality and complexity of the dynamic service graph, this may result in suboptimal 

graphs and operation. However, in D4.2, some algorithms are being studied and described 

for service-graph based service resolution. 

• Via a choreography component 

This can be mitigated in a more complex scenario, where a special choreography or workflow 

component is responsible for the coordination and management of the dynamic service 

instance graph. Having the global overview and being aware of the overall application 

targets, this coordinating component could leverage service resolution a number of times 

and construct the optimal instance graph itself, rely on FUSION orchestration, or take all 

decisions manually. An example application pattern that could make use of such scenario is 

the lobby pattern, where a game lobby component is responsible for finding the optimal 

locations of the game server and possibly also the individual game rendering services for 

each client. 

This scenario has the advantage of allowing full flexibility at the expense of requiring 

orchestration or coordination functionality inside such components. Note that we envision 

that for simple patterns, a service may rely on a generic or third party choreography 

component rather than requiring each service provider to always implement and provide 
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their own choreography components. We will discuss the role of such choreography 

component further in Section 2.6.3. 

Apart from the various types of service composition, we also investigated whether and how different 

(composite) service types or instances that have common service components could make efficient 

usage of already deployed instances of such service components, without significantly complicating 

service placement, deployment as well as application service design. The concept of “Multi-service 

configuration instances” provides an elegant solution to this problem. 

2.3.2 Multi-configuration service instances 

In Section 4.1.1 of Deliverable D3.1, we already described a number of variants for (incrementally) 

deploying composite services, reusing existing service components wherever necessary. Additionally, 

in Section 4.1.6 of Deliverable D3.1, we also discussed the issue of addressing composite services. 

Two possible approaches that were put forward in that Deliverable (see Figure 23 of D3.1) involved 

either providing NAT-like functionality in the Zone Gateway of the ZM, or requiring that composite 

services include an implicit gluing component that forwards incoming service requests to the 

appropriate service component. 

In this section, we describe an elegant and efficient concept that tackles some of these issues by 

means of service overlaying. In this example, we assume a static service graph, as for dynamic 

instance graphs, the graph is constructed and configured at runtime, either explicitly using a 

coordination component or implicitly in between the individual components. In both cases, the 

instances of each component will be configured via session instantiation parameters passed along 

when a session is created, or based on session-specific events (e.g., a user trying to watch a movie). 

2.3.2.1 Basic concept 

The core idea is to allow more than one service (configuration) to be overlayed on top of the same 

component instances. In other words, to allow service component instances to be able to handle 

user sessions that belong to different (composite) services types or instances, each with their own 

set of instantiation and configuration parameters. The key enabling concepts to efficiently 

implement such mechanism are: 

• Decoupling the available/used resource slots from the available/used service session slots.  

Previously, we assumed that one instance of a service component has a number of available slots 

depending on the service and the available resources, and that this was identical to the number 

of parallel sessions that the instance could handle (in the context of the corresponding service 

associated with that instance). 

By allowing one instance of a service component to be part of multiple application services 

instances, represented by a particular service configuration (i.e., service specification and 

instantiation parameters), the available number of resource slots can be shared across multiple 

services, each having their own internal configuration for handling a particular application 

service. A resource slot is an abstract representation of the number of parallel sessions can be 

handled by a service component for the given set of resources, not in the context of a specific 

(composite) service.   

For example, imagine an instance A of a streamer service component that is capable of hosting 

up to 4 sessions in parallel. This instance could be configured to be part of an EPG service as well 

as a dashboard service, where the EPG service configuration may for example use all available 

streamer sessions, but the dashboard may only use maximum 2 of those resource slots from the 

streamer component instance. Depending on the session configuration, the streamer will either 

operate as part of the EPG service component or the dashboard service component, possibly 

with different encoding parameters, based on the incoming service request. At one moment in 

time, all four resource slots may be occupied by EPG sessions, in which case no slots are left for 
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the dashboard service (which needs to be taken care of by the ZM scaling and gateway 

components). At another moment in time, the dashboard service may be occupying its maximum 

of 2 resource slots, leaving only 2 available streamer resource slots for the EPG service (at least, 

from the perspective of that specific streamer instance. 

Note that it is the responsibility of the service scaling component in the Zone Manager to decide 

to what extent to oversubscribe resource slots across multiple services. Note also that this 

mechanism also works very well in case the various service configurations represent different 

flavours of basically the same service type, but with different service names. 

• Uniquely identifying different service configurations by mapping them onto different ports. 

Apart from allowing instances to be part of multiple services or service configurations, another 

issue is how to identify an incoming service request to be part of service configuration A or B. 

One possible solution is to simply map each service configuration on a different port or endpoint. 

For example, the streamer instance listens on port 5001 for incoming requests of the EPG service 

configuration, and on port 5002 for incoming requests for the dashboard service configuration. 

This is however not a requirement. Some services may implement this by adding a dedicated 

field in the signalling message. For example, one could also include the service name as a header 

field, identifying the specific service for which the client is making the request. With this feature, 

we do however allow for the possibility of multiple services to be mapped onto different 

endpoints of a particular service component instance. 

• Reporting both resource slots as well as all service session slots. 

Instead of only reporting its available session slots, a service instance will report on its 

available/used resource slots as well as available and occupied session slots for each service 

(configuration). This provides the Zone Manager (and ultimately also the Service Resolvers) with 

accurate information regarding the available session slots for each individual (composite) service 

(configuration) and the overall resource utilization level of the physical component instances 

(e.g., for scaling purposes).  

Imagine the following simple example, depicted in Figure 4, where the arrows represent the 

signalling paths. In this example, there are two composite services, namely S and T. As can be seen, S 

and T have two service components in common, namely A and C. Ideally, a Zone Manager may want 

to be able to share one or more instances of A and C across particular instantiations of services S and 

T to reduce the amount of active service component instances. 

 

Figure 4 – Conceptual example of multi-configuration service component instances 

Note that it is up to the Scaling component in the Zone Manager to decide which instances of what 

components will be shared across what (composite) services. The Scaling can decide to only share 

instances of component C across service instances of S and T, but not to share instances of 

component A. Note that in case the instantiation parameters for component A would be identical, or 
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in case A is in fact a proper service on its own (i.e., service component and parameters), then only 

one service configuration for A is needed in Figure 4.  

2.3.2.2 Benefits 

The key envisioned benefits of service overlaying include the following: 

• Reuse of available resources 

This multi-configuration concept can potentially result in a significant reduction in the number of 

active physical service component instances, reducing the amount of resources that need to be 

reserved at any given moment in time. This is discussed in further detail in Section 4.1.  

• Controlled session-based resource oversubscription 

This concept allows for service specific resource oversubscription in a more controlled manner 

(i.e., via session slots), rather than the current service agnostic resource oversubscription found 

in cloud platforms (e.g., based on physical CPU oversubscription). By implementing the 

oversubscription at the session slot level, FUSION can still guarantee good QoS compared to 

classical cloud resource oversubscription, which is especially advantageous for demanding 

applications. This mechanism however does require that multiple service instances can share the 

same physical service component instances. In other words, FUSION services should be 

decomposed into highly reusable service components to maximize the benefits of multi-

configuration instances. 

  

Figure 5 – Example scenario where two high-level (composite) service instances share resource 

slots with the same streamer service component instance 

An example is depicted in Figure 5, where the resource slots of a streamer service component 

instance are reused for two service instances, namely an EPG and Virtual Desktop streaming 

instance. The EPG instance can leverage up to all four of the streamer resource slots (of which it 

is currently consuming two slots), whereas the other service can consume up to two slots of the 

shared streamer component instance, of which it is currently using one slot. It is up to the Zone 

Gateway to provide proper load balancing, ensuring that an incoming service request is not 

forwarded to a component instance of which all resource slots are already occupied. 

• Faster and more flexible virtual elastic scaling across running instances 

This mechanism also allows for a different type of service scaling, without actually needing to 

deploy or terminate physical instances, resulting in a more stable environment (i.e., a reduced 

number of deployment or terminations) as well as a faster scaling in or out of FUSION service 

session slots. We call this a virtual elastic scaling based on multi-configuration session slots.  

For example, looking back at Figure 4, imagine a number of instances of components A, B and C 

with a sufficient amount of available slots are already deployed in a particular zone, and the Zone 

Scaler decides that more instances of Service S need to be created. Then the Zone Scaler could 

decide to add service configuration S to a number of instances of A, B and C, and configure how 

many service session slots each selected instance should provide. In this case, the Zone Scaler 

does not need to deploy new instances of A, B and/or C to scale out service S in the zone, 
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potentially significantly reducing the scaling delay when new instances and resources need to be 

created. A similar strategy could be used for scaling in: instead of physically terminating 

instances, the Zone Scaler can also decide to simply reduce the number of available session slots 

for that particular services S in each of the components A, B and/or C, or even trigger the 

removal of that service configuration in a number of instances, while the instances themselves 

keep running (to handle other service configurations). 

2.3.2.3 Implementation 

We already implemented and validated this concept of multi–configuration instances at all layers of 

the prototype: 

• We extended the session slot based service factory in some of our demonstrator service 

components to be able cope with multiple service configurations, such as adding new service 

configurations at runtime, sharing the resource slots across multiple service configurations, and 

reporting the resource and service session slots to the Zone Manager. 

• We extended the DCA prototype to be able to add new service configurations to running 

instances (via a key/value store), and augmented the DCA APIs to be able to receive such 

requests from the Zone Manager. 

• We extended the Zone Manager prototype to be able to detect and exploit service component 

instances across multiple services, and trigger the DCA to add a new configuration to an existing 

instance. 

• We extended the prototype service manifest descriptions to be able to support this service 

overlaying concept, as well as allow a service provider to specify whether particular service 

(components) supports and enables this concept. In other words, it is not required for all services 

to support and implement this feature (though it can be supported with minimal effort). 

2.4 Service registration 

One of the key external interfaces to service providers is the service registration interface. This 

allows (internal or external) service providers to register their service into a FUSION domain to make 

use of the FUSION platform. Once a service has been registered, the FUSION service management 

layer will automatically deploy and manage that service according to the specified service 

requirements and policies. A service provider can monitor the actual state of all services registered in 

a FUSION domain and provide updates if needed. 

As FUSION is responsible for the lifecycle management of these registered application services, all 

information regarding the service, such as the service graph, requirements, and policies, should be 

described in a service manifest. As a result, the key interface for service providers to FUSION is the 

registration of a fully-contained service manifest, and in the following sections, we will elaborate on 

this FUSION service manifest. 

2.4.1 Service manifest 

A FUSION manifest captures an entire service description (graph) and fusion specific information 

such as session slots and input on how to deploy. The manifest is a specification of design time 

parameters and input for deployment. 

Concerning service graphs, mainly 2 types of graphs will be distinguished, notably statically described 

graphs and dynamically resolvable static graphs whereby the distinction between static and dynamic 

is based on the data plane resolution aspect. 

• Statically described graphs are defined as the full description of a service and how the service 

components are composed/interconnected with one-another. The data plane communication 
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paths or routing are fixed for the service instance lifetime and so within a service, the service 

components collaborate over the service instance’s lifetime. 

• Dynamically resolvable static services (with a statically defined service graph between types and 

dynamic FUSION resolvable interconnections between instances) are defined as a full description 

of all service components that make up a service and how the service components collaborate 

with one-another. The data plane communication paths are determined and evaluated at each 

service invocation. In Figure 6, the service graph with its dashed interconnections specifies how 

components collaborate and therefore allows for the FUSION framework to account for locality 

and proximity of the different components.  

 

 

Figure 6 – High-level representation of a FUSION manifest 

The service manifest has to cover Atomic Service Scenarios (ASS) as well as Composite Service 

Scenarios (cfr Section 2.3). Specifically for FUSION, the concepts of session slots and service 

evaluators also need to be contained in the service manifest. The FUSION manifest also contains 

information related to service QOS and resource monitoring, service scaling information (including 

geographical distribution and constraints), platform resource monitoring as well as costs and 

economical information (cfr. Figure 6).  

TOSCA [TOSC01] is an existing specification language focusing on the portability of cloud applications 

and services. TOSCA enables an interoperable description of application and infrastructure cloud 

services, the relationships between service components, and the operational behaviour of these 

services (e.g., deploy, replace, shutdown), while being agnostic about service creator, specific cloud 

provider or hosting technology. 

A FUSION service manifest will be described using the TOSCA language, more specifically using the 

standardized TOSCA simple profile in YAML v1.0 notation [TOSC02]. The simple profile is extended 

with the necessary FUSION concepts. 

In the following paragraphs, a high-level description on the FUSION TOSCA manifest is given along 

with the manifest processing flow through the FUSION framework components. A full FUSION TOSCA 

manifest description example can be found in Section 7.6. 
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2.4.2 General FUSION manifest processing flow 

When a request to deploy a TOSCA manifest occurs, the TOSCA manifest will be the blueprint that 

describes how all of the functional components (FUSION framework, data centre layer, OpenStack, 

...) need to be invoked to ensure proper service deployment and service operation. The description 

will focus on the deployment aspects. 

 

 

Figure 7 – Role of a FUSION manifest in the FUSION architecture 

On a general level, a registration and deployment flow is described, abstracting out any complexity 

and implementation specific details (these will be handled in the sub-paragraphs on a per topic 

basis). 

The manifest is registered at the FUSION Domain Orchestrator. Upon receipt of the manifest, the 

Domain Orchestrator will store the manifest in a service repository. This allows for inter-manifest 

referencing of services and service re-use at a description level (which can be leveraged at 

operational level via re-usable services or re-usable service components). 

The domain orchestrator contains or uses a TOSCA orchestration engine that is capable of 

interpreting a FUSION manifest, steering the FUSION framework and steering the Data Centre 

Adaptor. 

In the case of OpenStack, the service graph component in the manifest will be translated into a Heat 

Orchestration Template (HOT) and invoked on the OpenStack HEAT component. HEAT will provide 

the deployment of the service graph onto the cloud it controls. (for a description on HEAT 

architecture, cfr. [HEAT01] [HEAT02]). 

HEAT contains the necessary functionality to deploy Docker containers as software components and 

is provided as a plug-in. Through HOT templates wherein specifying the nova server type as 

DockerInc::Docker::Container, containers can be instantiated. The necessary configuration 

information such as IP endpoint information can be specified as well as the passing of environment 

variables. The latter functionality possibly allows for an environment variable to be set as e.g. a 

reference to the ETCD store where configuration and state information can be stored.  

Note: the TOSCA specification related to container technology is currently under study. The latest 

state can be found at [TOSC03].  

After initial deployment of the service graph, a configuration stage is entered in the deployment 

whereby the services are customized during boot and configured (e.g. through the cloud-init 

interface[SKIN14] as available in OpenStack). It is at this stage that the necessary linking and 

interconnections with other services, service components and the FUSION framework components is 

configured and established and normal service operation can start. 
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2.4.3 Manifest service graph component 

Practically, a TOSCA service manifest is described using a CSAR (Cloud Service Archive) and has a 

structure as given in Figure 8: 

 

Figure 8 – Example FUSION CSAR file structure 

The service-template section in the CSAR contains the description of the service graph and can rely 

on the types section; The types section contains descriptions of generic types. 

As described in the previous Section, this part of TOSCA will eventually be translated into Heat 

Orchestration Template format in case of OpenStack. The translation is performed by a translator 

tool that is described in a OpenStack blueprint [HEAT03]. A complete description of TOSCA and 

TOSCA simple profile can be found at [TOSC01],[TOSC02]. 

The FUSION specific types that extend the current TOSCA standardization are: 

• FusionService 

• FusionComponent 

• FusionEvaluator 

• FusionSvcContextRepo 

• FusionDomain 

• FusionAuthentication 

Their relation is described in the following UML diagram and focuses on the specific FUSION 

framework functionality:  
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Figure 9 – UML diagram of key FUSION components and relationships 

In the following paragraphs, we will briefly discuss topics concerning the various types related to 

specific FUSION functionality, and elaborating on the complexity that needs to be handled at the 

service description level. The service instantiation level and service operation level are not handled 

here. 

A FusionService is the actual service that will be publicly addressable. Since the CSAR is submitted to 

a FUSIONDomain, and the FUSION domain will eventually select a zone to run the service (in case of 

intra-zone placement), the FUSIONService will get references to its FusionZone. Through self-

referencing, composite FUSION services can be modelled. At description level, re-use of 

FusionService is realized by interconnecting FusionServices.   

In case of a composite service graph with inter-zone placement, the inter-zone communication is 

established between FusionServices in the different zones. This allows the FusionDomain to map the 

different FusionServices onto different zones while deciding on the most optimal distribution.  

Concerning composite services, upon registration and deployment request, the FUSION framework 

can determine whether a composite service and all of the necessary FusionComponents will be 

specifically instantiated or whether already existing FusionComponents and/or FusionServices can be 

re-used and be part of the entire FusionService. 

To allow the FUSION framework to perform adequate placement, resource and communication 

information is to be provided to the placement component. In order to provide this information, 2 

possible approaches where evaluated. 

A first approach is describing resource and communication information as part of the service 

manifest and which is the approach taken in current TOSCA standardization. Under the form of 

“constraints” that can be attached to different kinds of information elements (e.g. “HostedOn” and 

“ConnectsTo” relationship types) or using the “Requirement Type Hierarchy” to set requirements.  

This approach has been worked out in detail in the service manifest description in the Appendix in 

Section 7.6 and covers the aspects of late binding as described in Section 3.7. 
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An alternative approach is to use runtime information as provided by evaluator services. Evaluator 

services (ES) can leverage information collected from the environment to determine functional and 

operational suitability to run (a) FUSION service(s) in an environment and provide this information to 

the FUSION framework. 

Throughout this document, evaluator services have been described at the level of estimation of 

execution of a service in an environment and these topics also apply here and will not be repeated.  

The concept of ES as collector and reporter of runtime conditions could be extended to provide 

information on the communication aspects of services.  

The information that could be provided are available networking/communication capabilities and 

actual bandwidth, latencies and jitter. It allows for evaluation of actual communication patterns that 

a specific service or composite service exhibits. 

There are however some possible issues with this approach: for example, what if the communication 

path only gets instantiated at service instantiation (e.g. ALU Nuage approach whereby 

communication path provisioning is part of service instantiation). In the case of composite services, 

should all possible interconnections be tested? This would require the presence of ES and full mesh 

testing between on all possible service hosts. Both the presence of ES at each eligible location and 

network testing between them incurs a considerable effort(/overhead) to determine optimal 

composite service deployment. Furthermore, in case of composite services, ES evaluate of the 

different possible locations will be generating a score, how should this score be reported and how 

can it be made comparable against each other to allow fusion to select the most optimal 

communication. We will address some of these issues in Section 2.7.4.5. Others will be subject to 

further study. 

2.4.4 Service Deploy component 

This part is interpreted by the TOSCA engine, which is the functional FUSION component that is able 

to parse the CSAR, and deals with service capacity over time. Since in FUSION, service capacity is 

specified by session slots, the expected load patterns are specified in terms of the number of session 

slots at different moments in time (and space).  

2.4.5 Additional artefacts 

A CSAR file can also contain a number of artefacts, containing additional input files, scripts and other 

configuration files that services can use during deployment. The service VM or container images can 

be externally referenced or included into the CSAR.  

2.4.6 Multi-domain service registration 

In a multi-domain scenario, where services could be reached from within other FUSION domains (see 

also Deliverable D4.2 for more details), extra care needs to be taken when registering a new service 

with a particular name into a domain. In case services are only visible within a single domain, the 

domain can easily verify whether a service was already previously registered with a particular service 

name. However, in case services can be visible across multiple domains, then an additional 

verification mechanism need to be put in place to avoid naming collisions. We conceived two main 

options. A first option would be for the domain orchestrator to look up the service name in the 

service catalog of the service resolution plane (see Deliverable D4.2). 

A better option however would be for service providers that want cross-domain visibility of their 

services to first register their service name to an external authority and insert this authentication 

information into the manifest. The domain orchestrator, upon registration, first verifies with the 

external authority whether that specific service provider can use that specific name. Note that this 

mechanism also enables a service provider to register the same service using the same name in 

multiple FUSION orchestration domains without causing any false collisions.  
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2.5 Service and Platform Monitoring 

2.5.1 Monitoring challenges & requirements 

As discussed in Section 2.2, it is crucial to monitor and combine both service, network and platform 

metrics for enabling cost-efficient utilization of available platform resources as well as provide 

appropriate QoS towards the demanding services. 

In FUSION, we designed our architecture and conceived a number of key enabling concepts to 

facilitate this: 

• Session slots 

As introduced in Deliverable D3.1, the core idea of session slots is to take into account the 

number of parallel client sessions a particular service instance can handle with good QoS in a 

particular execution environment. As such, session slots condense and abstract runtime 

information regarding resource utilization, efficiency and load. 

• Evaluator services 

Apart from runtime information, FUSION also needs to be able to efficiently determine where to 

deploy particular services. For this, we introduced the concept of evaluator services in 

Deliverable D3.1, that abstracts the feasibility and cost-efficiency of a particular execution 

environment by an abstract score, which can incorporate both static as well as dynamic 

information. More specifically, it can capture whether a particular execution environment has 

the appropriate set of resources and capabilities, how many slots would be supported by that 

environment, and how good that environment behaved in the past for running that service. 

More details and discussion on evaluator services is provided in Section 2.6.2.2. 

• Service resolution 

As discussed in detail in Deliverable D4.2, the main idea of service resolution is to take into 

account service metrics, platform metrics as well as network metrics for optimally distributing 

incoming client requests across running instances. Service and platform runtime metrics are 

covered by session slot information, whereas network information comes from the network 

monitoring infrastructure. A FUSION domain orchestrator also incorporates high-level network 

monitoring information for deciding where to deploy new service instances. 

• Adaptive heterogeneous cloud platform 

As discussed earlier, demanding applications often have stringent requirements with respect to 

resource utilization and behaviour. To significantly improve overall QoS delivered by a 

heterogeneous cloud platform on which FUSION zones are deployed, we are working on an 

adaptive heterogeneous cloud platform that takes into account the application requirements, 

platform capabilities and tries to optimize the runtime behaviour of the underlying platform for 

such types of applications. More details are provided in Section 3.5. 

2.5.2 High-level FUSION orchestration metrics 

In this section, we zoom in a bit more on two key high-level FUSION metrics and discuss their role 

within FUSION for efficiently managing services and resources, namely session slots and evaluator 

services, operating roughly at different time scales: 

• Short-loop metrics: active session slots 

Within an execution zone, session slots provide a very lightweight metric summarizing available 

capacity and load towards the zone manager components such as the Load Balancer and the 

Scaler. Incoming requests can easily be forwarded to instances with a particular amount of 

available slots, depending on the balancing policy. The Scaler within an execution zone can also 
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make usage of the active session slots and its recent history for quickly creating new (virtual) 

instances. A key benefit of session slots is that this information can be done on a discrete service-

specific metric (hiding the resource requirements per active session), rather than estimating the 

effective load and impact on the service based on low-level resource metrics such as CPU or 

network load. 

• Longer-loop metrics: evaluator service scores & session slots history 

Within a FUSION domain, evaluator services can be used for estimating where services can be 

deployed cost-effectively (given some longer-term demand pattern). This information can be 

augmented with summarized session slot utilization information coming from the individual 

zones to give high-level but relevant information regarding the resource utilization over time of 

particular services as well as their popularity. 

The way these key metrics are integrated within the FUSION architecture is briefly discussed in the 

next section, and more in detail in the second part of this Deliverable. 

2.5.3 FUSION monitoring 

In Deliverable D2.2, we presented a high-level view of the FUSION monitoring architecture. In this 

monitoring architecture, monitoring data is exchanged in between all service layers. For each layer, 

we briefly comment on what type of monitoring information is expected to be exchanged. 

2.5.3.1 Domain-level monitoring 

Between a FUSION domain and execution zone, the key monitoring data that is passed along is 

twofold: 

• High-level session slot availability information is passed from all execution zones to the domain 

orchestrator, allowing the domain to take global decisions for increasing or decreasing the 

number of available session slots in particular regions, based on predicted load and networking 

information. 

• For placement decisions, the scores of the evaluator services are passed back from the execution 

zones to the domain orchestrator, allowing the domain to optimally place services across the 

available zones, without requiring detailed information on the resource capabilities and 

availabilities in each zone. Using these evaluator services, the amount of monitoring data that 

needs to be exchanged between a zone and a domain can be significantly reduced and in fact is 

completely abstracted away, resulting in a much more scalable (and fine-grained) solution, that 

can take into account the heterogeneous nature of the different execution zones. 

2.5.3.2 Zone-level monitoring  

To efficiently manage services and resources within an execution zone, we envision two types of 

monitoring data to be necessary: 

• Service session and resource slot information 

The availability of available service session slots and resource slots can be used by the zone 

manager both for internal scaling and load balancing purposes. This session slot information 

comes from the deployed services and provide the zone manager insight in the availability and 

resource utilization of the locally managed services. 

• Platform and execution environment information 

For deploying new service instances, the zone manager needs to be aware of the availability of 

physical (or virtual) resources. To avoid that a Zone Manager needs all detailed information of 

the underlying resources and its current state, we abstract this by representing different types of 

resources or hosts as different execution environment types. Each type of environment may have 
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a number of properties attached to them that describe some of the higher-level properties of 

that execution environment. Of a particular type of execution environment, there may be many 

instances (or actual environments). 

Very detailed information of these execution environments is not needed, as the evaluator 

services can be used to abstract all infrastructure details (e.g., how efficient is a particular 

environment for running a particular service). It is the task of the underlying DCA layer to present 

an underlying DC as a set of (more abstract) execution environments, each belonging to a 

particular environment type. 

In theory, more than one FUSION service could be deployed in one of these environments. In 

that case, the DCA should also provide high-level utilization information concerning the load of 

that environment. This could be represented as a percentage; it is then up to the zone manager 

to learn how many instances of a service could be deployed in a particular environment. 

However, for now, we can safely assume that one environment hosts a single service instance, 

and a service instance determines the number of available session slots based on the available 

actual resources within that execution environment. 

A zone manager may also be able to create new execution environments in the underlying DC 

(via the DC) in case there is no fixed 1:1 mapping between the available physical resources 

offered by the zone and the underlying DC resources. For example, a zone deployed on an 

existing cloud platform may decide to dynamically grow (or shrink) the size of the zone within 

that cloud to be able to deploy more service instances. 

2.5.3.3 DC(A)-level monitoring 

The Data Centre Adaptor (DCA) layer is a(n) (optional) layer in between a FUSION zone manager and 

the underlying DC. The main purpose of this layer is to abstract away the underlying lower details 

w.r.t. the resources and deployment mechanisms of the underlying DC from the zone manager, of 

which the main responsibility should be to manage the higher-level aspects of deploying and 

managing FUSION services. See Section 3.4 for more details on this DCA layer.  

The monitoring within the DCA layer (of the underlying DC) can be divided into two main categories. 

The first category is the monitoring for internal use and optimization of the underlying resources of 

the DC. This aspect will be discussed in more detail in Section 3.5 when discussing the heterogeneous 

cloud platform.  

The second category of monitoring data is with respect to the execution zones that are deployed on 

top of these DCA layers. As discussed in the previous section, one of the tasks of the DCA layer is to 

abstract the different types of resources, hosts and infrastructures as instances of particular 

abstracted execution environment types. These environment types could be augmented with 

additional metadata, allowing a zone manager to categorize or cluster particular environment types 

based on this metadata. One example of metadata could be the availability of a GPU resource type in 

that a particular execution environment. Services are deployed in such environments; the resource 

utilization and efficiency is reflected in the session slot utilization and availability. 

2.5.3.4 Service-level monitoring 

As discussed already before, the main monitoring data expected from the services is the session slot 

availability information. This high-level abstract information abstracts all service-specific resource 

requirements and is used by almost all FUSION layers for efficiently dealing with service and resource 

heterogeneity. 

The evaluator services on the other hand can be considered to be service specific probes that can be 

deployed in different environments for assessing that environment in the context of that service and 

abstracting all detailed knowledge by a simple score. Upon this score, a service can be efficiently 

deployed across a heterogeneous set of resources. 
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2.6 Service lifecycle management 

As detailed in Deliverable D2.2 and D3.1, the lifecycle of FUSION services in the FUSION architecture 

is managed at three levels, each covering some aspect of the lifecycle of FUSION services: 

• FUSION domain layer 

At the domain layer, service lifecycle management is focused on ensuring that an appropriate 

amount of session slots of all registered services are available in particular regions, or that new 

instances can quickly be deployed on-the-fly when necessary. 

A key role of a domain orchestrator thus is coordinating global service lifecycle management 

across all execution zones, while leaving the lower-level details to the lower layers for scalability 

and efficiency reasons. To be able to efficiently deploy FUSION services across multiple zones, we 

developed the concept of evaluator services, which allows to take into account zone and service 

specific requirements in an elegant and scalable manner at the domain level.  

• FUSION zone layer 

Being in between the domain and DC layer, the main role of lifecycle management at this layer is 

to coordinate and manage the various FUSION instances of services, (pre)provisioning them on 

the appropriate physical or virtual environments, etc. This may include sharing particular service 

component instances across multiple (composite) services.  

• DC layer 

This layer deals with the low-level aspects of service lifecycle management, such as configuring 

and managing the physical and/or virtual environments, allocating and managing the 

corresponding resources, starting, stopping or migrating services, status monitoring, etc. 

In the following sections, we discuss service (pre)provisioning, various deployment strategies and 

implementations, and the impact of composite services. 

2.6.1 Service provisioning 

We define service provisioning as the act of preparing a particular (physical or virtual) environment 

to deploy a new instance of a particular service. This includes the following key steps: 

1) Fetching all necessary VMs, containers, files and/or other artefacts needed to deploy and start 

the service; 

2) Select and allocate all necessary (physical and/or virtual) resources that will be assigned to the 

new service instance, creating a new environment for that service;  

3) Prepare and configure the newly created environment for the service so that the service can be 

started afterwards. 

Especially the first step can be quite time-consuming. For example, imagine a VM image of 1 GiB that 

needs to be fetched from a (centralized or decentralized) repository to a particular (node in an) 

Execution Zone. Even at 1 Gbps, this would still take about 8 seconds, and at 100 Mbps, this would 

take up to 80 seconds. As such, efficient service provisioning mechanisms such as (i) preprovisioning 

and (ii) more lightweight packaging mechanisms can significantly reduce the provisioning time and 

bandwidth requirements, which is especially important in the on-demand deployment scenario. 

Preprovisioning strategies can be implemented as part of the Service Scaler component (both at the 

domain and the zone level) by taking into account the expected provisioning delay and the 

deployment scenario, leveraging historical data to learn based on past behaviour.  
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Another strategy is to reduce the size of the service data that need to be fetched in order to 

provisioning a service onto a particular environment. Two primary mechanisms we will briefly discuss 

are the following: 

• Incremental download 

Instead of creating full-blown VM images that contain all data, one possibility for service 

providers is to create minimal VM images that only contain the bare minimal for starting the 

service, and to incrementally download necessary additional libraries and data just-in-time. For 

example, if the base VM image size could be reduced to 100 MiB, then the time to fetch an 

image could be reduced to below one second in case of 1Gbps download bandwidth. Two 

possible downsides of this approach are however: 

• In-session delays 

Clients may experience possible delays and stall times while accessing the service, especially 

when they connect almost immediately follow after a new instance is deployed (e.g., in the 

on-demand scenario); 

• Limited caching 

In case all data is within the VM, once the VM is downloaded and cached into an execution 

zone, all subsequent instantiations can be much faster, amortizing the provisioning penalty 

across multiple instances. In case of incremental downloads, large chunks of data are fetched 

after service instantiation, meaning that each service instance will need to fetch these 

additional data chunks. If these data chunks cannot be cached somewhere locally, this may 

easily result in a larger bandwidth consumption as well as potential in-session delays and 

stalls experience by all first clients (i.e., the clients that occupy the first session slots of an 

instance). 

Note that this mechanism does not necessarily require specific support from FUSION to enable 

such mechanism (though FUSION could take it into account for its preprovisioning and scaling 

strategies). 

• Stackable VM images or containers 

A second technique is to allow multiple VM images to share common data chunks, either by 

expressing different VMs as deltas with respect to each other or with respect to a common base 

image [SAT09], or by using a stackable file system and imaging system as is used with Docker 

containers [TUR14], where an container image is constructed by stacking a number of image 

layers on top of each other, where each of the layers can be shared across other container 

images in a tree-like fashion. A general example is depicted in Figure 10. In Figure 36 in Section 

4.2, a detailed example is shown for some of our FUSION prototypes. In case of Docker, the base 

layers are typically shared by large numbers of different containers, where only the application-

specific layers need to be (pre)provisioned when a new container instance is to be deployed. This 

can even impact service placement decision within a Execution Zone, as it may be preferable to 

quickly deploy a new service on demand in locations where the amount of provisioning is 

minimal to reduce startup delay.  

As Docker automatically fetches and caches the necessary layers, this provides the benefits of 

incremental downloads (but now at provisioning time) without losing the benefits of caching. 

Obviously, this mechanism can also be combined with incremental downloads to fetch session-

specific or user-specific data. 
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Figure 10 – Docker container stacked image layers 

In FUSION, we actively promote and investigate the capabilities of lightweight containers such as 

Docker for efficiently packaging, provisioning, deploying and running FUSION services. Some of the 

experimental results are described in Section 4.2 as well as in Deliverable D5.2. 

2.6.2 Service deployment 

Service deployment is the general process of creating, configuring and starting new instances of 

particular services on a particular execution environment. Similarly, service termination is the 

reverse function of stopping, destroying and removing instances and/or their corresponding 

environment. 

As discussed in Deliverable D2.2, we envision two main deployment scenarios, both at the domain 

level as well as zone level, though the impact will be more substantial at the domain level compared 

to the zone level:  

• Pre-deployed services 

In this scenario, services are deployed in advance (or terminated afterwards), based on predicted 

load patterns across execution zones (or across nodes in a zone). In this scenario, we assume 

there is sufficient time for provisioning and optimally placing instances of services, i.e., there is 

no stringent time pressure. 

• On-demand service deployment 

In this scenario, services need to be deployed as fast as possible in a particular region. This can 

be triggered either due to unexpected flash crowds in particular regions or within a region (even 

for very popular services), or to support a lazy deployment model for the long tail of unpopular 

services for which having at least one instance on standby in all possible regions of a FUSION 

domain would be too expensive for a service provider. 

Two crucial aspects that need to be considered when deploying a service are: 

1) Where to deploy the new instance (in what zone, in what execution node, etc.)? 

2) How to configure that environment for optimally deploying an instance of that? 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 39 of 136

 

Copyright © FUSION Consortium, 2014 

The first aspect is strongly related to service placement and is discussed in more detail in Section 2.7. 

Two key enabling FUSION concepts include evaluator services as well as multi-configuration service 

instances (i.e., service overlaying), on which we elaborate later in this section. 

The second aspect is regarding how a zone or node needs to be configured and prepared for 

deploying that service. This is discussed in more detail in Section 3.5. In the next section, we first 

discuss the concept of lightweight containers as a new lightweight isolation and deployment 

mechanism for services.  

2.6.2.1 Lightweight containers 

A classical cloud platform typically uses full-system virtualization (using either a type 1 or a type 2 

hypervisor [ALA09]) for packaging, sandboxing and deploying services on top of physical resources. In 

this model, each virtual machine encompasses a virtualized resource model (CPU, networking, 

storage, etc.), a guest OS, the application and its runtime environment. This allows for ultimate 

flexibility at the expense of additional overhead with respect to resource utilization, packaging and 

performance. 

Lightweight containers provide a new deployment model, where applications are deployed and 

managed in lightweight isolated environments on top of a single host OS that supports such 

containers. In this mode, the resources are not virtualized, but they can still be isolated and 

configured for particular containers, enabling very fine-grained resource control mechanisms with 

low overhead. Thirdly, containers also enable lightweight software packaging models, as only the 

applications and their libraries need to be packaged (some of which can even be efficiently shared 

across containers), instead of full VMs incorporating their own OSes. A high-level comparison of the 

software stack between classical VMs and containers is depicted in Figure 11. 

 

Figure 11 – Classical virtualization versus lightweight containers 

Lightweight containers offer a wide range of benefits for different environments. A high-level 

summary of some key benefits is depicted in Figure 12. 
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Figure 12 – Summary of key advantages of lightweight containers for different environments 

In case of IaaS cloud environments, the key advantages mostly relate to virtualization and more fine-

grained resource control, wheras for PaaS environments, the low packaging and runtime overhead 

are extremely beneficial. For performance sensitive environments, the bare metal performance and 

predictability provided by containers is key, whereas for devops, agile development and 

management are important.  

With respect to FUSION, some of the key features include efficient packaging of service components, 

fast deployment (in distributed execution zones), bare-metal performance (for demanding 

applications) and corresponding fine-grained resource control.    

Some remaining drawbacks of containers currently involve security, the shared OS and kernel and 

the lack of process management (which is less of an issue w.r.t. FUSION as FUSION provides its own 

orchestration and lifecycle management layers). 

In FUSION, we actively focus and stimulate lightweight container for packaging and deploying 

FUSION (application and management) services, although we also support full-system virtualization. 

This raises the issue of how FUSION can deal with these different types of deployment, especially 

considering the fact that the zones and their underlying DCs can be very heterogeneous with respect 

to what service packaging and deployment models they support, potentially preventing particular 

services to be deployed (efficiently) in particular execution zones. 

An overview of the various combinations and their implications is depicted in Table 1: 

Table 1 – Compatibility of different service packaging/deployment models w.r.t. different DCs  

DC Lightweight containers Classical VMs 

Bare-Metal DC 

(MaaS) 

• Easy to provide densely packed low-

overhead base container-enabled 

bare images to deploy on the bare 

nodes (e.g., CoreOS) 

• Need to provide a base image supporting 

the particular VM technology. 

VM-based DC  

(Iaas) 

• Create basic container-enabled VM 

images to deploy in whatever format 

is supported (cfr Heroku model, 

CoreOS-in-VM, etc.) 

• Efficiency and QoS of VMs depends 

on hypervisor of DC 

• Compatibility depends on supported 

hypervisor and VM image format. 
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Container-based DC 

(Iaas & PaaS) 

• Compatibility depends on what 

container technologies the DC 

supports.  

• Note that one of the true potential 

of Docker is their push towards a 

standard API for container mgmt: 

libcontainer [LIBC01]. 

• In the PaaS model, the efficiency and 

QoS depends on underlying resource 

management layers. 

• Not easily supported (unless a 

virtualization layer is supported within 

these containers). 

 

From the table, it can be concluded that containers provide more flexibly (and more efficient) 

deployment strategies, as it is more easy to embed containers in VMs on a hypervisor than vice 

versa. Due to the recent focus on standardizing the management APIs for containers, some of the 

issues regarding incompatible VM images and hypervisors can be avoided. 

2.6.2.2 Evaluator services 

We already introduced the concept of evaluator services in Deliverable D3.1. Its initial goal was to 

have a more flexible mechanism for determining whether a particular execution environment is 

suitable for deploying and running a particular service or not, rather than trying to capture all service 

requirements into a complex static manifest and require all FUSION orchestration layers to be able to 

interpret and deal with these complex manifests. 

An evaluator service is basically an active service probe that returns a score regarding the feasibility 

of a particular execution environment for (cost) efficiently running a particular service. These 

evaluator services are deployed within the execution zones, can be provided by the application 

service and are triggered by FUSION prior to service placement and deployment.  

For example, services may require specific hardware or a certain location near to other, already 

existing service instances or have other requirements towards the execution environment. These 

requirements may be related to specific hardware or may be runtime dependent, like the network 

distance to other services. For a rendering service for instance it may be important that a GPU or 

even specific GPU hardware capabilities are available and a streaming service providing a video 

stream that is merged into the rendering is located only at acceptable distance. Describing these 

kinds of restrictions in static manifest files will result in very complex rule sets on how the 

environment has to be checked before a service can be deployed onto it. The descriptions would also 

have to be maintained with each new hardware or even hardware revision that comes available. 

Therefore the static approach using manifest files will not be sufficient. It will however be a good and 

efficient shortcut for simpler services. But to provide a solution that works also for more complicated 

services like the before mentioned rendering service, it will be necessary to physically test the 

environment before a service is deployed to it. For this reason evaluator services will be used. 

Evaluator services implement logic that can test an execution environment for all features necessary 

to run the application. They can basically be a smaller version of the application. For applications that 

have the same requirements towards the environment, it would also be possible to use one single 

evaluator service. This may be the case for different software that are built on the same middleware 

with common requirements. One example are multiple games that are developed using the same 

game engine and hence have similar or even the same requirements towards the hardware. 

After running, an evaluator service can calculate a rating for each execution zone it was executed on. 

In a naïve approach, an evaluator service will always return a higher ranking for a better hardware 

since it can achieve better performance on it. It therefore does not take into account the increased 

costs it causes to the data center operator or the service provider (depending on the business model) 
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by using better hardware. As one possible approach, the service could also take into account the 

different prices of the execution zone. This could be seen as a binding offer that the execution zone 

makes to the service. If the service is executed on this specific execution zone, the price must not 

change for a certain amount of time. These costs could then also be taken into account when 

calculation a rating for the execution zone. 

All this information can be condensed into a single value, for example a normalized floating point 

number. By comparing the different scores from different execution environments, FUSION can 

easily find the best environment from the evaluator service’s point of view. 

For efficiency reasons it may be necessary to store the evaluation results and not run an evaluator 

service for each deployment request. Another optimization would be to run the evaluator service 

only once for different execution environments if it is guaranteed that they will physically behave the 

same. This requirement has to be handled very strictly, because the Zone Manager cannot know 

which features are tested by the evaluator service. 

This is also true for caching the evaluator results. Any influence from outside which may have an 

impact on the evaluator results would require a new evaluation. More details on how evaluator 

services can be used for service placement is provided in Section 2.7.3. 

2.6.2.3 Multi-configuration service instances 

In Section 2.3.2, we already described the concept of multi-configuration service instances or service 

overlaying, where instances of service components can be part of multiple (composite) service 

configurations. As such, service deployment in FUSION not only entails deploying new physical 

instances (e.g., VMs, containers, etc.) in a new execution environment, but also involves configuring 

existing service component instances to take in a new service configuration and configure itself 

appropriately for hosting as well the new service configuration.  

Similarly, terminating particular service instances may imply simply removing that service 

configuration from all involved instantiated service components rather than physically stopping and 

removing the running instance(s). 

The overall process is summarized below: 

• First, service components that support this feature need to specify this in their manifest 

description. Similarly, a service may specify whether existing service components can or cannot 

be reused for a particular service due to policy restrictions.  

• The Scaler component uses this information to decide how to scale services across existing or 

new instances. 

• In case the Scaler decides to reuse existing service component instances, it triggers the 

Deployment module to add a new service configuration with the provided parameters. 

• This request is forwarded to the DCA, which will manage all low-level management such as 

adding the new configuration parameters into a corresponding key value store, which explicitly 

or implicitly triggers the instance to absorb the new configuration. The Deployment module 

adjusts its internal state accordingly. 

• The service component instance configures itself to host the new service configuration. This may 

include doing internal bookkeeping, opening new ports to listen for incoming client requests for 

the new service configuration, etc. When the new service configuration is activated, the 

endpoint and corresponding available session slots are pushed to the Zone Manager, announcing 

the existence of new session slots of a particular service type. 
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• The Zone Manager will update its statistics accordingly, adding the newly available session slots 

to the existing ones for that service type (if already present), and provide an update towards the 

Service Resolution plane (either immediately or after some delay). 

As discussed before, this allows for efficient scaling of FUSION services and reuse of running 

instances without directly impacting the amount of physically deployed instances. A key role of the 

Scaler component is to determine when to reuse existing instances and when to deploy new 

instances, based on the resource session slot availability and the predicted load patterns. 

2.6.3 Composite services 

In general, lifecycle management of composite services can very quickly result in scalability and 

complexity issues in case a FUSION domain orchestrator would have to coordinate all this complexity 

for every instance of all composite services. As such we need more scalable solutions that can apply 

to a large set of composite service patterns.  

In this section, we will elaborate on this topic and present the current vision of the consortium. In the 

final year of the project, we will extend upon this vision and approach. We divided the discussion in a 

number of topics, namely regarding service deployment, session slot management, instance visibility 

and the choreography component. 

2.6.3.1 Choreography component 

For non-trivial composite services, we propose a choreography component that typically will be 

provided by the service provider. This choreography component will be responsible for the overall 

coordination, lifecycle and state management of the overall composition and may be involved in the 

load balancing as well. This orchestration and choreography could be done at deployment time, in 

which case the components and communication links are set up when the composite service is 

created, at service request time, in which case the choreography component configures particular 

instances and connections for that specific request, or even based on timing or event-based policies. 

2.6.3.2 Service deployment and management 

As mentioned in Section 2.3, we focused this year on two main classes of composite services, namely 

static service graphs and dynamic instance graphs: 

• Static service graphs 

In case of deploying simple static service graphs, the overall deployment of such simple service 

compositions could be managed in a scalable manner by FUSION orchestration, either built into a 

FUSION domain (e.g., in case of inter-zone deployment) or into a FUSION zone (e.g., in case of an 

intra-zone deployment). The role of FUSION in such cases should however be limited to making 

sure that all components are placed, deployed and get connected to each other (i.e., you can find 

each other’s endpoints), which could easily be done by setting up and passing along the location 

of a shared key value store that all service components can use for registering and finding the 

peering components. In this scenario, FUSION orchestration however should NOT be responsible 

for the further lifecycle management of such composite instances.    

When the service has a nontrivial static service graph or non-trivial lifecycle management, this 

should be handled by a choreography component, that could be provided by either FUSION (for 

simple standard patterns), a third party provider or by the service provider as a key component 

in the service graph. It could also be incorporated into one of the existing application 

components. 

This choreography component acts as a (possibly very service-specific) orchestration or workflow 

component that takes care of all complex details for managing and coordinating the various 

components. This component may interact with the FUSION orchestrator for optimally deploying 
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and placing new or finding existing components. With this choreography component, all state 

information is stored and managed within this component (in a distributed, decentralized and 

possibly service specific manner) rather than in the FUSION domain orchestrator, resulting in a 

much more scalable and flexible solution. This means however that a service provider may have 

to provide its own choreography component, resulting in a higher complexity for service 

providers. Third party providers could however provide standard implementations for particular 

patterns that handle this complexity. 

• Dynamic instance graphs 

In case of simple implicit dynamic service instance graphs, the knowledge of the composite graph 

can be completely implicitly or explicitly encapsulated in the service component instances 

themselves. These instances leverage the FUSION service resolution protocols for finding and 

connecting to other service components. Each service component has service session slots of 

their own. The service overlaying feature (i.e., multi-configuration service instances) could be 

used for creating different specific flavours of particular basic services (e.g., an EPGStreamer or 

VDeskStreamer service, which are overlaid on top of a generic Streamer service). 

For more complex or centrally coordinated dynamic service instances, a choreography 

component could be used as well to keep track of the overall composition and state of each of 

the components. Due to the dynamic nature of such service graphs, such choreography 

components will very likely be service specific. This component may or may not have a full view 

of the entire composition and may also leverage some of the public FUSION orchestration 

protocols for optimally deploying and placing new instances of particular components, or finding 

existing instances via the service resolution plane. 

In summary, for nontrivial composite services, we envision a choreography component that handles 

all the complexity, rather than the FUSION orchestrator, resulting in a more scalable and flexible 

(decentralized) solution, at the expense of pushing some of the complexities towards the service 

providers (though this approach also allows a lot of freedom to the service provider). 

2.6.3.3 Service resolution and session slot management 

With respect to service resolution and service session slot management, a FUSION service request 

typically returns one endpoint (or a list of endpoints) per service type. In case of a composite service, 

there can be two types of endpoints: the endpoints of each individual service component instance 

(which FUSION considers as instances of different atomic service types), as well as the endpoint of 

the composite service instance. 

In case of the individual service component instances (that are part of a particular service instance 

composition), we envision that each service component itself can be considered to be an 

independent standalone service type, and this has its own FUSION service name and session slots. In 

general, there may be a case where some of these components should not be individually publicly 

visible via the service resolution plane. In such cases, it still makes sense to attach a(n) (internal) 

service name to such service components as well as internally manage its session or resource slots, 

but the zone gateway simply does not inject this service name and session slot tuple into the service 

resolution plane. Obviously, in such cases, these components will not be addressable via the service 

resolution plane (e.g., in case of dynamic graphs). 

With respect to the composite service name, incoming service requests typically need to be 

forwarded to a particular component of the composite service. This endpoint can map onto one of 

the components of the composite service, which in many cases may be the implicit or explicit 

choreography component that will also set up all necessary connections when a service request 

arrives. 
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In Section 2.3.2 we introduced the concept of multi-configuration service instances, where we allow 

to overlay more than one service configuration/type onto a particular service component instance. 

This mechanism can also be used here to overlay the composite service (i.e., its name and available 

slots) onto one of the service components (e.g., the choreography component). As such, by 

leveraging this mechanism, we have a natural and efficient mechanism for routing service requests 

for composite services to an actual service component that is part of the composition. 

2.6.3.4 Visibility of individual service (component) instances 

In a FUSION execution zone, we assume that in many cases, all existing service (component) 

instances of a particular service type will not be individually visible by the resolution plane for 

scalability and efficiency reasons. Instead, for each service type, the number of available slots will 

typically aggregated per zone and only one (or a few) zone service endpoints will be directly 

addressable from outside the zone. This allows a zone manager to do local load balancing across the 

various deployed instances based on its own policies (instead of deferring this to the service 

resolution plane). In Section 2.9, we provide an example of how this could be implemented 

efficiently.  

However, in case a client (or another FUSION service) needs to be able to have multiple data 

connections to different components in the service composition, where components also need to 

communicate with each other internally to serve this client, these various components need to be 

able to find each other in the context of this served client (to avoid that they get connected to wrong 

instances of the same service component type).  

One possible solution is to allow service components to also expose their endpoints, but then this 

requires that all such service components need to be publicly visible and addressable, which may not 

be desirable (e.g., this would result in a huge amount of floating IP addresses that need to be 

available). 

Another solution is to use a sessionID or other identifier, that is shareable and can be passed along as 

parameter of a service request, and to extend the operation of a zone load balancer. This identifier 

could be used in at least two possible ways. We will elaborate further on this topic in the final year of 

the project. 

• Either this sessionID is incorporated in the data connection of the request and the FUSION (or 

service-specific) load balancer is responsible for forwarding the incoming connection to the 

correct instance. Note that in case this load balancer is service-specific, this functionality could 

actually be part of the service graph of the composite service and is shared across multiple 

instances and sessions of that composite service. In such scenario, the choreography component 

would first program the service specific load balancer and then returns the endpoint of that load 

balancer to the client.  

• Alternatively, a session-specific IP port is enabled on the zone or service load balancer. This way, 

the load balancer immediately knows what internal endpoint it needs to forward the incoming 

data connection. These ports could be added or removed dynamically based on the required 

publicly visible instances or sessions. Consequently, instead of creating a huge amount floating IP 

addresses, this approach would create a dynamic amount of floating IP ports. Floating IP ports 

likely should not be immediately reused to avoid collision of old data connections onto unrelated 

new service instances. 

2.7 Service placement 

The goal of service placement is to find where/which execution zones (EZs) to deploy service 

instances to achieve the service provider objectives. In this section, we consider a service as an 

atomic service. In general, the service providers consider different objectives: some may seek to 

minimize the network latency between clients and service instances, others may focus on load 
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balancing across all EZs, while still others may try to minimize the deployment cost of their services. 

In this work, we define a utility function corresponding to user satisfaction. In detail, we use latency 

between a user and an EZ as a metric to measure that user satisfaction. We focus on a multi-

objective optimization problem in which we first guarantee max-min fairness between users and 

then maximize the total utility of all users. We also consider a trade-off between the service 

deployment cost and the performance (total utility) of users. We model the problem as a linear 

programming formulation. 

In the second part of this section, we present an evaluator-based service placement heuristic, and 

discuss how this heuristic could be extended towards composite services. 

2.7.1 Problem description 

For the mathematical model, the problem can be described as follows: 

• Inputs: estimated user requests, network performance model (e.g. latency between users and 

EZs), deployment cost of service instances in EZs and resource constraints (e.g. number of 

session slots that each EZ can support). 

• Assumption: we use a centralized model in which each Domain Orchestrator (DO) has full input 

information of all EZs and users. Time is divided into fix-length windows; then the DOs run the 

optimization formulation at the beginning of each window time. Based on the results, we know 

which service instances to be deployed in which EZs. 

• Objective: maximize the performance (total utility) of users while achieving max-min fairness 

between users. The objective also considers the trade-off between the performance and the 

service deployment cost. 

2.7.2 Mathematical model 

2.7.2.1 Utility function: 

 

Figure 13. Utility function vs. response time 
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Figure 14. Utility with different “k” 

As shown in Figure 13, the utility function should express the following meanings: 

• If �	 ≤ ����, users are very happy. Depending on service type, we can choose an appropriate 

value of ����. For some services, even if reducing more the response time cannot improve QoE, 

therefore the utility keeps the same value if �	 ≤ ����. For example, voice over IP requires 

���� = 20	�� [Wiki]). However, for other services like Web, the shorter the response time is, 

the better QoE the users get, so in this case we can set ���� = 0. 

• If ���� < �	 ≤ 	����: the utility value is positive, meaning that the users are quite happy. 

However, the user satisfaction is decreasing when the response time is increasing. We call ���� 

as the expected response time. 

• If ���� < �	 ≤ 	����: the utility value is negative but the QoE is still in an acceptable range. 

• If ���� < �: the utility value is −∞ meaning that we consider the service request is blocked. 

To satisfy the above requirements, we can define a utility function as follows (similar to but more 

complicated than the one in [NOMS08]): 

 ���� = 	
���

��
 (1)  

where: 

� =	���� − ���� and 

  (2) 

A constant �	 ≥ 	1 is used to indicate the importance level of the user request. Large value of k 

means that the request is less important. By changing the values of k, Rmin, Rmed and Rmax, we can 

control the shape of the utility function (Figure 14). 

2.7.2.2 Optimization Formulation: Linear Programming (LP) 

The objective of the optimization formulation is to achieve max-min fairness between users while 

maximizing the total utility. The objective also considers the trade-off between the performance and 

the service deployment cost. The algorithm works in two steps: 

• Step 1: the objective function is to maximize the minimum user utility. In this step, we guarantee 

that the solution achieves max-min fairness between all users.  

• Step 2: after the first step, let the value of the objective be Umax-min. Then, in the second step, we 

add the following constraint to the formulation:  

min (u) >= Umax-min 
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By adding this constraint, the second step guarantees that the solution we find will be at least as 

fairness as in the first step. In addition, with the new objective: �� 	[" ∑� − �1 − "�$%�&], the 

solution maximizes the total utility while considering a trade-off with the deployment cost (" is a 

parameter to say the relationship between the total utility and the deployment cost in the 

optimization objective).  

Inputs: 

• Estimated user requests: ()*: User “i” requests “d” session slots from service “j”. 

• +)*: link bandwidth required by user “i”  to get service “j”.    

• -).: latency (response time) between user “i” and execution zone (EZ) “t”. 

• /.
*
: capacity (session slots) of service “j” at EZ “t”. 

• 012-34/35.*.: unit deployment cost of service “j” on EZ “t”. 

• 67/35..: unit bandwidth cost at EZ “t”. 

• 89):
)*

, 891(

)*
, 89<=

)*
: three response time thresholds defined in Figure 13 

• 8)* =	891(

)*
− 89):

)*
 

Main variable: =).
*
∈ [?, @] - fraction of user “i” connects to EZ “t” to get service “j”. We assume that 

user “i” is a set of individual users that are grouped by near geography locations.  

LP formulation of Step 1: 

A������� = �� 	A  (3) 

s.t. 

∑  �B
C

B∈DE = 1		∀�G, H� ∈ I (4) 

∑ J�C �B
C
≤ KB

C
		∀H	 ∈ �L�MG$L, & ∈ NO�∈PQ�R   (5) 

��C =	∑ S�B �B
C

B∈DE 		∀�G, H� ∈ I (6) 

��C ≥ 0	∀�G, H� ∈ I (7) 

��C ≥ ��C − ����
�C

	∀�G, H� ∈ I (8) 

��C =
�TU��TU

�TU�
TU
	∀�G, H� ∈ I (9) 

A ≤ ��C	∀�G, H� ∈ I (10) 

$%�&��VWXY = ∑ ∑ ILZS%[K%�&CB�C∈\B∈DE J�C �B
C

 (11) 

$%�&]^ = ∑ ∑ _`K%�&B�C∈\B∈DE a�C �B
C

 (12) 

$%�&��VWXY + $%�&]^ ≤ cdcef_Kdhc (13) 

 �B
C
∈ [0,1]	∀�G, H� ∈ I, & ∈ NO (14) 

Explanation: 

• In the formulation, we use the notations “i” as user id, “j” as service id and “t” as EZ id.  

• Objective function (3): guarantee max-min fairness where U = min(utility) (as constraint 

(10)). 

• Constraints (4): all the requests of a user “i” for a specific service “j” have been served. 
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• Constraints (5): each EZ has a limited number of session slots dedicated for a service type. 

This may happen that some special services (e.g. the ones that need GPU processing) can 

only be deployed at some specific EZs. This constraint is used to make sure the number of 

session slots of EZ is enough to serve user requests. 

• Constraints (6) are used to computed the average latency for the user “i” to get the service 

“j”. Assume that the connection between users and EZs are a full mesh, it means that each 

user can connect to any EZs. For the inputs of the formulation, we simply remove all pairs of 

(user, EZ) that have latency which is larger than ����
�C

. This step guarantees that the latency 

for any user “i” to connect to any EZ “t” to get service “j” has to be less than ����
�C

.  

• Constraints (7) – (8) ensure that ��C ≥ 0	Gi	��C ≤ ����
�C

, otherwise ��C ≥ � − ����
�C

. 

• Constraint (9) is used to model the utility function (1). Note that when ��C ≤ ����
�C

, z can be at 

any value that is greater or equal to 0. However, thanks for the objective function, we would 

like to maximize the utility (9). It means that the formulation will choose a minimum value of 

z, or in other word, z is set to 0. Similarly, the formulation will choose ��C = ��C − ����
�C

 when 

��C ≥ ����
�C

. Moreover, as mentioned in the constraints (6), a feasible solution does not allow 

any response time that is larger than ����
�C

. In other word, we can say that when ��C > ����
�C

, 

the utility function is –infinity. In summary, the constraints (6) – (9) model exactly the utility 

function as defined in (1) (or in Figure 13). In the formulation, a user is group of individual 

users. For simplicity, we consider all group users are the same. If users are with different 

group sizes, we can multiply the right hand size of (9) with a parameter corresponding to the 

size of the group user “i”. This helps to distinguish the group of users with different number 

of individual users. 

• As shown in Figure 14, in the negative region, with the same value of response time rij, the 

request with low “k” gives lower utility (we call it a bad request). As the objective function is 

to maximize the utility of the bad request, the formulation will try to increase the bad 

request’s utility by setting small value of rij for it. This intuitively means that the request with 

low “k” is more important. 

• Depending on the users and the service type, we can set the appropriate values of the 

important level “k”. Then, by playing with “k”, Rmin, Rmed and Rmax, we can control the shape 

of the utility function (Figure 14). 

• Constraint (11) measures the deployment cost of services in EZs. 

• Constraint (12) measures the required bandwidth cost of services in EZs. 

• Constraint (13) set a limit for the total budget of the service provider. 

 

LP formulation of Step 2: 

�� ["�∑ ��C��C∈\ − �1 − "��$%�&��VWXY + $%�&]^�] (15) 

s.t. 

(4) – (14)  

A ≥ A������� (16) 

 

Explanation: 

In this step, we add the constraint (16), where U is the minimum utility of users and Umax-min is the 

objective value from step 1, to ensure that the solution should be at least as fairness as the max-min 
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fairness in step 1. We keep the same constraints (4) – (14) and change the objective function as (15). 

"	is a parameter to say the relation between the total utility and the cost. If we set " = 1, we get the 

solution with maximal total utility (while the cost is only restricted by the constraints (13)). On the 

other hand, if " = 0 the solution we get achieves max-min fairness while minimizing the total cost. 

There is always a trade-off between the utility and the cost. In case the service provider know how to 

choose the value of ", they simply run the formulation as step 2 above and get the optimal solution. 

However, if it is hard to estimate ",	we have another way to give hint for the service provider to find 

a suitable solution. In general, given a solution, we can plot its cost and utility on a 2-D plane (Figure 

15).  

 

Figure 15: trade-off utility and cost.  

By setting " = 1 and " = 0, we can find two solutions called maxutility and mincost, respectively. From 

maxutility, we can get the corresponding cost called maxcost. Then, we set many STEP_COST points in 

between the range [mincost, maxcost]. Next step, in constraint (13), we set the value of TOTAL_COST to 

be equal to each STEP_COST point. We set " = 1 and find the corresponding total utility for each 

value of the STEP_COST point. Depending on the granularity of the graph and how much time we can 

pay for computation, we can choose a suitable number of STEP_COST points. Finally, we get a trade-

off relationship of the cost and the utility as in Figure 15.  Based on this figure, the service provider 

can easily choose a solution with their desired trade-off. 

It is noted that the optimization formulation above is a linear programming model; hence it can be 

solved efficiently. The number of variables  �B
C

 in the LP problem is |k| 	m 	 |c| 	m 	 |n| where |k| is the 

number of users, |c| is the number of EZs and |n| is the number of service types. Since  |c| and |n| 

are usually much smaller than |k|, the worst case complexity of the LP problem will be d�|k|o.q� 

[LPWIKI]. 

2.7.3 Relationship with service selection 

The objective of service placement is to find which service instances to be deployed in which EZs. 

Given this deployment, we know the actual session slots at each EZ. The server selection phase is 

based on these real resource constraints to allocate user requests to appropriate EZs. In general, the 

formulations that we used in the service placement and the service selection are quite similar. We 

list in below the commons and the differences between them. 

2.7.3.1 Similarities between service placement and service selection 

• They share the same idea of utility function.  
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• The algorithm works in two steps to achieve max-min fairness between users while maximizing 

the total utility. The algorithm also considers the trade-off between the performance and the 

cost. 

• The constraints in the optimization formulation are similar, except the ones relating to the cost 

(constraints (11-13) in Section 2.7.2). 

2.7.3.2 Differences between service placement and service selection 

• The service placement considers the deployment cost of service instances in EZs while the 

service selection cares about the data transit cost between multi-domains. 

• The capacity constraints (5) in service deployment are about the capacity of hardware resource 

at EZ. In service selection, these are the constraints on the available session slots of service 

instances in EZs. In general, the capacity of the service selection is less or equal to the one of the 

service deployment. 

The service placement is executed less frequently than service selection. In the service placement, 

we assume that a user can connect to any EZs. However, in the service selection, to reduce the input 

size for the optimization, we can assume that each user can only connect to a subset of EZs. 

2.7.4 Evaluator-based service placement strategy 

Next to the central mathematical placement algorithms presented above, in this section we present 

an evaluator-service based distributed service placement heuristic for finding an cost-optimal 

execution environment for a particular service. This strategy allows for service providers to decide on 

where to deploy services, trading off cost versus QoS. 

2.7.4.1 Considerations 

The decision where to place a service is based on different criteria, taking account hardware 

requirements, its proximity to external sources or the clients, but also costs for running the service 

on a specific execution zone and zone policies. The service provider will be charged for running the 

service, so in the end the service provider has to decide what he is willing to pay for. For example, is 

the service provider willing to pay for the more expensive GPU-enabled environments, or for the 

more expensive small data centres very close to the end users (see also [VERM14]). 

The most flexible way is to keep this decision completely up to the service provider: he has to find 

the balance between costs and usage that optimizes his gain. If the service requires best hardware 

and maximum performance and the service provider is willing to pay for it, this should be a valid 

choice. 

Therefore, there should be as much freedom to choose from different possibilities for the service 

provider as possible, because in the end he will be charged for the service. So if there are decisions to 

be made that may influence the service, it should be up to the service provider to make the decision. 

On the other hand the service provider would always use the best solution available if it has no 

impact on his costs. But any choice he makes may have an economic outcome, be it higher usage of 

hardware or reduced performance of other services. It is necessary to avoid that every service is 

becoming greedy and only takes into account its own advantage. This is normally achieved by policies 

of the zone manager or similar regulations. These policies guarantee that each services gets its share 

of hardware usage. 

Instead of just applying the zone policies with the service provider having no chance to react on a 

certain decision, another possibility would be to charge less for services that behave according to the 

policies and to charge more for services that claim more CPU, better network connection or any  

other resources. In this case the service provider could decide, whether the increased usage of 

resources is worth the increased costs of if another behaviour would be more economic. 
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The service provider influences the execution zones where a service will or will not be executed by 

providing an evaluator service (see Section 2.6.2.2). This evaluator is provided upon service 

registration and will be run on the execution zones where the service may be executed. It may 

perform service specific measurements and calculate a rating for the execution zone. The execution 

zone with the best rating will then be chosen by the orchestration for deploying the service. 

This rating has also to take into account the price for execution the service in that specific zone 

(which is deployed in a specific location in the network). A good rating for a zone based on only the 

available hardware may therefore turn into a bad rating if the price is not reasonable for the service 

provider. 

The price is therefore a lever to influence the decision of the service provider represented by his 

evaluator service. If a participant in a FUSION domain wants to influence the placement of a service, 

this can be done by adjusting the price. If a service for example claims resources in a way that 

contradicts the policy, it may have to pay a much higher price for it. 

2.7.4.2 Description 

In this strategy, the idea is to do service placement within a domain and within a zone completely 

based on the concept of evaluator services. As these evaluator services can be very application-

specific, this means that this strategy gives complete control over where instances of particular 

services should be placed, typically taking into account the following information: 

• Service requirements 

Services can have very specific requirements with respect to particular resources and resource 

capabilities, but also the required or preferred proximity to a particular external entities (e.g., a 

central database, CDN nodes or end users), which directly translates into the number of session 

slots a service can provide towards the end users with good QoS in a particular execution 

environment. 

• Historical monitoring/runtime data 

Apart from static information regarding capabilities and requirements, evaluator services could 

also take into account the runtime behaviour of services during previous deployments in 

particular environments, and adjust the scoring accordingly. 

• Pricing 

In the end, the true purpose of the evaluator service is to estimate how many session slots (with 

good QoS) a particular execution environment can provide at a particular price; in other words, 

how cost-effective an environment is for a particular service, both in terms of available internal 

resources as well as the location of the zone in the network.  

As discussed earlier, a domain and execution zone may still want to impose their policies 

regarding resource utilization. This can be done through proper pricing of a particular zone and 

execution environment within a zone. By allowing a dynamic pricing model where the price of 

execution environments can change based on changing policies or changing runtime behaviour, 

domains and zones can steer the decisions of the evaluator services. It is then up to the 

evaluator service to decide at what price particular services should run in particular 

environments. Note that in case a generic domain or zone evaluator service is used, applying 

particular policies becomes trivial. 

2.7.4.3 Functional modelling 

In general, an evaluator service is a function that, given a set of input parameters (including the 

environment, historical data, policies, etc.), returns a value that can be considered as a score or rank, 
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indicating how suitable that environment is for deploying a number of session slots of a particular 

service: 

�$%�L = LM�S��&%��hL�MG$L, kr�&s�����, NrM, K%�&�NrM, &�� 

In this formula, Service represents the service requirements, InstParams the instantiation and 

configuration parameters with which that service needs to be deployed (e.g., UHD quality, best effort 

QoS, etc.), Env represents the environment (both static and runtime environment as well as its 

location in the network), and Cost(Env, t) represents the cost of using such environment for some 

unit of time. Note that this cost factor not only can be time-dependent, but can depend on other 

parameters as well, such as the service type, etc.). 

The value that is returned is expected to be a numerical value and can be an integer (e.g. 

representing a rank) or a float (e.g. in the range [0, 1], representing a score), depending on the 

service evaluator. As this score is used to compare one environment with another, only the relative 

value is important and not the absolute value or magnitude of the score (i.e., is score S1 smaller or 

larger than S2). One notable exception is to indicate that a particular environment is completely 

unusable. In case we restrict the numerical values to be strictly positive, the value 0 could be used for 

that purpose.  

From a semantic perspective, the score will often be some measure of the number of session slots 

per hour per Euro, weighed with the proximity importance of a service deployed in a specific 

environment. As discussed in [VERM14], small zones that are close to the edge will typically be much 

more expensive (i.e., limited capacity, higher real estate and maintenance costs, etc.), so it is up to 

the service provider to trade-off the cost of an environment w.r.t. its relative location and service 

requirements. 

In this model, an important observation is that an evaluator service can also be regarded as an 

objective function in a multi-dimensional search space, where the goal is to find the argument values 

or coordinates that minimize that objective function: 

NrMtVB�hL�MG$L, kr�&s������ = argmax
�∈zD{

�LM�S�hL�MG$L, kr�&s�����, L, K%�&�L, &��� 

where E is the set of all possible logical, virtual or physical execution environments in which a new 

instance of that service could be deployed. The result is the environment that maximizes the 

evaluator service score. Note that to incorporate various pricing policies, a single virtual or physical 

environment could be wrapped into multiple logical environments, for example each with their own 

cost model (and possibly corresponding behaviour). Different search space exploration algorithms 

could be used for quickly finding an optimal (or close-to-optimal) solution. 

Note that by assigning an expiration date to each evaluation score, subsequent evaluations and 

optimizations could be significantly faster (possibly also covering a larger search space) and with less 

runtime overhead (as each evaluation may be done by an active evaluator service that is consuming 

resources). 

2.7.4.4 Simple heuristic 

A simple top-down heuristic for doing evaluator-service based service placement is the following and 

is based on the divide-and-conquer algorithm already presented in Deliverable D3.1: 

1) First, a domain could preselect or filter a number of execution zones for which an evaluation will 

be done. This filtering step could be done for example based on (network) monitoring data, 

bandwidth or latency requirements (e.g., if a service needs to be deployed in some region of a 

domain, it makes no sense to evaluate zones at the other side of the domain), etc. Note that a 

zone may be selected multiple times, for example in case a domain wants to evaluate a zone in 

different contexts (or policies). 
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2) Next, for each of the selected zones, the domain triggers each execution zone in parallel for 

making an evaluation (e.g., within a particular amount of time) by returning an offer matching 

the service deployment request. 

3) Each execution zone subsequently preselects or filters a number of (physical, virtual or logical) 

execution environments onto which the evaluator will be deployed and/or called. The 

preselection of environments could be done for example based on static service requirements 

and corresponding environment capabilities (e.g., availability of a required GPU), where 

particular evaluators are already deployed, different cost models, etc.  

With each environment, a corresponding cost must be associated by the zone manager, on which 

the evaluator will operate. A domain could also have provided domain-level cost factors for 

deploying in a particular execution zone (e.g., based on load or network information). 

4) Next, a zone manager triggers all selected evaluator services in parallel to make an evaluation 

and return a score (possibly within a particular amount of time).  

5) All evaluator services evaluate the environment based on its capabilities, service requirements, 

use of historical data, etc. How this is implemented is completely up to the evaluator. An 

evaluator may do an active evaluation for each incoming request, do continuous evaluations in 

the background, etc. 

6) All scores that are received in time by the zone manager are compared and the best one(s) are 

selected to be included in the offer. Note that more than one environment and score may be 

selected in case one environment cannot handle all requested session slots. A zone manager may 

decide to share this information with the domain orchestrator. 

This offer is stored and time stamped by the zone manager, along with all relevant information 

to be able to later deploy the services in the correct environments and price setting when 

deployment requests come in from the domain. This offer is returned to the domain. 

7) All offers received in time by the domain orchestrator are compared and the best one(s) are 

selected for service deployment. Note that more than one zone may be selected for deploying 

particular amounts of session slots of that service. During service deployment, the domain passes 

along the corresponding offer ID so that the zone manager can correlate the deployment request 

with the offer, check the validity and subsequently configure and deploy the instances onto the 

appropriate environments. 

2.7.4.5 Composite services 

The evaluator based placement heuristic as described above focused mainly on atomic service 

deployment. However, in case the (partial) service graph is already known at deployment time, the 

optimal location of where to deploy each of the service components should be determined. In 

Deliverable D3.1, we already described two extreme approaches: 

• Exhaustive recursive approach 

With this approach, the FUSION orchestrator triggers the top-level evaluator service (across 

multiple selected zones), which will in its turn trigger the evaluator services of dependent service 

components (interacting with FUSION for the overall coordination). Although this mechanism 

may work very well for relatively simple service graphs, for nontrivial service graphs, this quickly 

results in an exponential amount of possibilities that need to be evaluated. 

• Divide-and-conquer approach  

In this approach, the FUSION orchestrator triggers the evaluator service of each service 

component independently for assessing the optimal locations for each individual service 

components. When all scores have been collected by the orchestrator, the latter then decides on 
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the optimal location of each of the components, taking into account the inter-service affinity or 

anti-affinity, and communication bandwidth and latency requirements that are statically 

described in the manifest of the composite service. Although this approach linearizes the overall 

placement complexity, a key disadvantage is that this does not include the service provider in 

selecting the optimal relative location of each component. For services with relatively simple 

inter-service communication requirements, this could however be more than sufficient. 

In this section, we shortly present two variants of both extreme approaches, making the former 

more efficient (but less accurate), and making the latter more flexible (but slower). 

• Pruned recursive approach 

Instead of trying all possible combinations, the overall idea is to apply various conservative or 

aggressive pruning techniques to significantly reduce the number of combinations, using specific 

application knowledge of the service, service component and inter-service component 

communication requirements. For example, the total amount of combinations could be kept 

constant, and depending on the importance or sensitivity of particular requirements, some 

portions of the service graph could be evaluated more thoroughly than others. Also, by 

leveraging historical data from previous service evaluations, many non-optimal combinations 

could already be pruned a priori.   

• Two-phase divide-and-conquer approach 

With this extension, the divide-and-conquer approach is actually performed twice in two 

subsequent phases. In the first phase, each the list of scores (or offers) for each service 

component is determined individually. Once collected, this information is passed in the second 

phase to an evaluator service of the composite service that returns a final global score for the 

composition, including the selected offers for each individual component.  

 

Figure 16 – Two-phase evaluator-service based composite service placement 

As input for the evaluator service of the composite service, the previously determined scores (or 

offers) of the components should be taken into account, possibly including available session slot 

information of already deployed components. The latter is needed to be able to also leverage 
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already deployed instances of particular service components. The composite evaluator service 

may request particular information regarding the cost and QoS in between particular zones, in 

case the evaluator service itself has no available information (e.g., based on historical data from 

previous deployments). The overall approach is depicted in Figure 16. 

In the current approach, the location of the composite evaluator service can be arbitrary. 

Alternatively, it could also be deployed strategically along with the possible location(s) of the 

most critical component in the graph (to be able to do actual measurements). 

In the final year of the project, we will evaluate these heuristics as part of the integrated prototypes 

for a number of composite service graphs. 

2.7.4.6 Implementation 

We already implemented an initial version of this heuristic in the integrated end-to-end 

demonstrator, which we are currently evaluating in WP5 in a number of scenarios. In the prototype, 

all steps described earlier are done for services that expressed a dependency on an evaluator service. 

As a proof of concept, we also implemented an initial simple evaluator service to verify the 

corresponding APIs and overall concept. In the final year of the project, we will quantitatively 

evaluate the effectiveness of evaluator services in the integrated prototype in a heterogeneous 

environment (see Deliverable D5.2). 

2.8 Service scaling 

2.8.1 Session slots 

FUSION targets long-lived sessions of multimedia applications running on heterogeneous clouds. The 

maximum number of concurrent sessions a service instance can handle depends on various 

parameters, such as the number of resources assigned to the execution environment (container, VM, 

etc.) and the capabilities of the underlying hardware (e.g. GPU capabilities). These cannot be 

predicted by the application developer. 

Introduced in Deliverable D3.1, we created the concept of session slots to address this heterogeneity 

in execution zones and deployment policies. Service instances report the number of new connections 

they can serve with sufficient QoS
1
 to their Zone Manager, who in turn will advertise service load 

information to its gateway service resolver. This advertised number may be the mere sum of all 

available session slots reported by the instances, but it could as well hide zone scaling policies. For 

example, if each instance is expected to report N session slots, but currently only one instance is 

actively running, the zone might decide to report MxN session slots, with M the maximum number of 

instances that can be deployed in this zone (e.g. taking into account cost considerations). This way, 

the zone-specific scaling policy remains hidden, and new requests can be routed to the zone. 

2.8.2 Slot-based zone scaling 

Instance load information is of vital importance to the service resolution layer; but they can be an 

important driver for implementing scaling policies inside a single zone. Scaling policies are defined by 

the orchestrator when the service is registered in the zone. 

When deploying an instance, the orchestrator specifies the number of session slots that should be 

available at all times. If the number of available session slots, aggregated over all running instances, 

drops below a threshold predefined in the service manifest, the Zone Manager instructs the DCA 

layer to deploy additional instances. 

                                                           
1
 The notion of session slots may not be suitable for all service types, e.g. services with a request queue. Such 

services may report a different indication of load, e.g. the average waiting time in their request queue. This 

will be studied later in the project. 
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When service demand decreases, instances may be shut down to reduce infrastructure renting costs. 

Many scaling policies are already available in cloud software like OpenStack; e.g. based on average 

CPU usage across all VMs of the same service in the evaluation period. However, default scaling 

down policies shut down the instance with the shortest lifetime. For FUSION services with long-lived 

sessions, this solution is unacceptable as it would result in users being disconnected abruptly.  

Instead, the Zone Manager must interface with the DCA to 

• Identify the specific instance to be stopped, e.g. the instance that currently has the most 

available session slots. We refer to such instances as decommissioned.  

• Ensure that new clients are no longer redirected to the decommissioned instance, e.g. by 

reconfiguring the service’s load balancer. 

• Shut down the decommissioned instance once the last client has disconnected. This can be 

monitored if the number of available session slots equals the maximum number of session slots 

that an instance can handle. 

2.8.3 Implementation 

To showcase the feasibility of this approach, we have opted for a tight integration with OpenStack, 

the leading open source cloud computing solution. The relevant components are shown in Figure 17. 

 

Figure 17 – Implementation of instance scaling in a single zone; triggered by session slots 

 

2.8.3.1 Collection of monitoring information 

Deployed service instances use the FUSION Zone Manager API to post their currently available 

session slots. The API is implemented following the REST principles, with instances sending updates 

via POST messages to Ceilometer, which is the metering framework provided with Openstack. We 

have implemented a new meter in Ceilometer, namely fusioncounter
2
. Instances will then provide 

updates on their session slots to this meter; of which they receive the IP address and port by reading 

from the configuration variable, stored in a key value store.  

 

                                                           
2
 The default meters available in Ceilometer can be found at: 

http://docs.openstack.org/developer/ceilometer/measurements.html 
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The body of the POST message to Ceilometer follows the following JSON syntax: 

 

 

 

 

 

 

 

 

 

 

The number of available session slots is encoded in the variable counter_volume, following the 

Ceilometer policy.   

2.8.3.2 Scaling 

The Zone Manager contains four components that are involved in the zone-internal scaling process. 

• REST webserver: this webserver implements the Zone Manager API, and is used by the 

Orchestrator to register and deploy services. 

• Slotcount Evaluator: this module continuously evaluates the aggregated number of available 

session slots of all running instances and starts up- or downscaling if needed. 

• LB Member Manager: this bookkeeping module keeps track of which instances are behind the 

same load balancer. It is the IP and port of the load balancer that are announced as service 

endpoint to the service resolution plane.  

• Slotcount Advertiser: this module is responsible for injecting service load information into the 

service resolution plane. In the current implementation, this is the sum of all available session 

slots of running instances, plus the number of session slots that could be offered in addition by 

deploying the maximum number of instances allowed. 

When the number of service instances must be scaled down, the Zone Manager will flag the instance 

that currently has the most available session slots to be decommissioned. The load balancer will be 

configured not to forward any new clients to this instance. The Zone Manager will notice that the last 

client has disconnected from the decommissioned instance when the number of available session 

slots reported by this instance equals the maximum number of session slots. Then, the Zone 

Manager will instruct HEAT, the built-in orchestrator of OpenStack, to stop this instance. 

The current HEAT implementation was extended to support session-slot based scaling. Scaling 

operations in HEAT are carried out by evaluators that are triggered by alarms. However, the current 

HEAT implementation of the scaling evaluator simply stops the instance with the shortest lifetime. 

Therefore, we have made the HEAT scaling evaluator instance-aware. The evaluator reads from a file 

provided by the Zone Manager which instances should be running. The Zone Manager may add or 

remove instance IDs to this file, and triggers the HEAT alarm accordingly. 

 

 

[ { "counter_name": "fusioncounter", 
     "user_id": "",  

     "resource_id": "",  
     "counter_unit": "sessionslots",  
     "counter_volume": "$sessionslots",  

     "project_id": null,  
      "counter_type": "gauge",  
      "resource_metadata": { 

                  “instanceId" : "$iid", 
                   "serviceId”:“$sid” 
      } 

 }]"  
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2.9 Intra-zone load balancing 

There are good reasons for a FUSION Execution Zone not to expose the endpoints of all individual 

service instances to the service resolution plane. Some of these reasons are as follows: 

• Scalability 

Reducing the number of items that need to be injected and managed by the service resolution 

plane, by aggregating the session slot availability information per service type rather than per 

instance; 

• Internal zone or DC policies 

A FUSION zone manager may want to have better control on the balancing of incoming requests 

across different instances. Reasons for this include congestion avoidance or mitigation, 

terminating particular physical racks or hosts, etc. 

• On-demand deployment 

A zone manager may want to be very aggressive in terms of the number of running instances 

compared to the number of reported available session slots. For example, it may want to expose 

more slots than what is supported by the already deployed instances (if any). Especially in case of 

fast lightweight deployment mechanisms such as containers, the penalty of deploying a new 

instances on-the-spot may be almost negligible in some cases. In such scenarios, not having to 

expose individual instances is an advantage. 

• Floating IP real estate 

A zone manager may want to minimize the number of floating IPv4 addresses that he has to use 

for making all services directly accessible. With a load balancer, only the IP address of the load 

balancer needs to be publicly addressable. 

• Security 

For security reasons, it is also interesting not to expose the endpoints of all individual instances. 

Specific attacks can be better mitigated by a load balancer. 

As FUSION services already explicitly expose session slot availability, it makes sense to take this 

metric into account when doing load balancing. The session slot information can be used in 

combination with internal zone or DC policies for deciding to what specific instance a request needs 

to be forwarded.  

This FUSION load balancer could be implemented in a number of ways. For example, existing 

applications or flow-based load balancers such as haproxy or OVS could be extended (e.g., by adding 

a specific plug-in) to support this session-slot based load balancing. 

As an example, in Figure 18, we present a possible FUSION-aware flow-based load balancer using 

OVS in an execution zone. When a new incoming data connection arrives in the execution zone for 

the Streamer service
3
, the OVS switch will percolate to the FUSION-aware controller, as this is a new 

flow for which it has no information yet. At this point, the FUSION-aware flow controller can select 

an appropriate instance of the Streamer service for handling that new connection/session. The OVS 

switch subsequently is configured accordingly to automatically forward all subsequent data packets 

of that new connection to the private IP address of the selected FUSION instance (e.g., Streamer0). 

For other incoming requests, the same procedure would be repeated, allowing to balance different 

connections across different instances. 

                                                           
3
 It is important to note that we assume here that the service resolution step already has been done. As such, 

the “Streamer” label in the Figure actually represents the public endpoint for that service in that zone (e.g., 

the endpoint of the load balancer handling that service). 
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Also within an execution zone, this flow-based load balancing can be done. For example, in case the 

Streamer0 instance wants to open a connection to an EPG service (running inside the zone), the 

outgoing connection will be intercepted by the local OVS switch, allowing the FUSION-aware 

controller to select the optimal instance of EPG and configure the OVS switch to forward all packets 

for that flow to the private IP address of the selected EPG instance.    

 

Figure 18 – Example OVS flow-based FUSION-aware load balancing 
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3. DESIGN & IMPLEMENTATION 

3.1 High-level architecture and design considerations 

In Figure 19, a high-level overview of the key FUSION components and their key interactions are 

depicted: 

• A FUSION domain orchestrator (D), managing all registered FUSION services across a set of 

distributed execution zones. 

• A FUSION execution zone (Z), managing deployed FUSION services in a execution environment. 

• A FUSION data centre adaptor layer (DCA), an optional adaptor layer, abstracting the details of 

the lower-level orchestration and management layer of the underlying execution environment. 

• A FUSION service resolver (R), providing optimal service selection for client service requests. 

• A FUSION evaluator service (EVAL), providing application-specific feedback for optimal service 

placement. 

• A FUSION application service (EPG), leveraging FUSION architecture for providing excellent QoE 

towards clients. 

• A FUSION service provider (blue avatar), registering and monitoring FUSION application services. 

• A FUSION client (green avatar), connecting to FUSION application services. 

 

 

Figure 19 – High-level view of all key FUSION components 

This architecture has been discussed in more detail in Deliverable D2.2. In this chapter, we will focus 

on the design of the individual components, their primary interfaces and their implementation 

status. In this section, we shortly elaborate on some of the cross-layer design considerations. 

A first design consideration is the usage of a adaptor layer in between a FUSION execution zone, 

managed by a zone manager (ZM), and the underlying data centre. In fact, for implementing an 

execution zone and zone manager, we envision a number of approaches or modes, as depicted in 

Figure 20: 

• All-in-one, where the data centre also incorporates all ZM APIs and functionality. 
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• A fat DC-specific ZM, where the zone manager also includes the DC-specific DCA backend. 

• A thin DC-independent ZM, where the zone manager only includes the higher-layer FUSION 

functions, but uses the public DCA APIs for all lower-layer DC lifecycle and resource management 

functions. Note that in this mode, the FUSION DCA component could either run on top of the DC 

as an opaque service, or could also be integrated into the DC (API). 

 

 

Figure 20 – Layered execution zone design 

The advantages and disadvantages of each of the modes are summarized in Table 2. In this section, 

we have chosen to focus on the thin ZM mode, thus assuming a clean separation between the 

higher-layer FUSION lifecycle management functions in the ZM and the lower-layer DC-specific 

lifecycle management functions implemented in the DCA and DC layers. As such, we will also 

describe the public interface between the ZM and the DCA in following sections. Obviously, blending 

one or more of these components allow for better integrated and optimized solutions. 

 

Table 2 – Advantages and disadvantages of various ZM/DCA/DC integrations 

Mode Advantages Disadvantages 

All-in-one 

• Highest integration & optimization 

opportunities 

• Direct control of hardware 

• Lowest overhead 

• Requires control over entire stack: 

from DC all the way to ZM 

• May require different 

implementations for different DCs  

Fat ZM 

• Reasonable integration & 

optimization opportunities 

• Can be deployed on DCs managed 

by other providers, allowing to 

elastically leverage external 

resources 

• May not have direct control over 

hardware 

• Different DCs may require different 

fat ZM implementations, or fat ZM 

needs to extra-fat and contain 

back-ends for multiple DCs 

Thin ZM 
• Clean separation of components 

• Only one lightweight ZM 

implementation required 

• No cross-layer integration & 

opportunities, especially when DCA 

and DC are also separated 

 

In Figure 21, the various deployment combinations are depicted of data centres, DCAs, zone 

managers and domain orchestrators. Option 1 represents the simple case where one ZM is deployed 

on one DCA on top of one DC. In general, we envision that both data centres as well as DCAs could 

host multiple execution zones, possibly from multiple independent FUSION domains. For example, 

one could easily deploy multiple execution zones from one or more FUSION domains on public cloud 

infrastructures such as Amazon EC2 (see options 2 and 3). The other options represent some of the 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 63 of 136

 

Copyright © FUSION Consortium, 2014 

other cases mentioned above, such as the thin ZM where the DCA is integrated in the DC (option 4), 

one or more fat ZMs deployed on top of a DC (option 5), and finally an all-in-one ZM (option 6). 

 

Figure 21 – Different deployment combinations of ZMs, DCAs and Data Centres 

 

A final consideration is regarding the prototype implementation of each of these components to 

validate and evaluate their functionality and interworking. We started by decomposing all 

components into the key functional blocks and defined their corresponding interfaces, as already 

partially described in Deliverable D3.1. Subsequently, we mapped these high-level interfaces onto a 

set of REST protocols and clearly defined their scope and purpose. More details of these protocols 

can be found in Sections 3.6 and 7.  

This allowed us to start implementing one or more initial prototypes of each of these functional 

blocks independently from each other in various programming languages and environments, using 

the modular design approach as discussed in Section 3.9 of Deliverable D2.1. Different partners can 

implement their own zone manager, DCA, session slot based scaling mechanism or domain 

orchestrator placement module according to their requirements, and integrate it easily in the overall 

prototype. 

In the following sections, we elaborate on each of the layers, providing an update on their design 

followed by a description of their prototype implementation. 

3.2 FUSION domain orchestrator 

3.2.1 Design 

An updated version of a FUSION domain orchestrator design is depicted in Figure 22. In the graph, 

we depict all key elements and design decisions: 

• A common public interface, shared by all external entities that need to interact with a domain 

orchestrator. Using proper user/role based authentication and authorization mechanisms, 

particular registered users acting in a particular role can query and/or modify particular aspects 

in a domain.  For example, a zone manager or service provider can only see the subset of services 

to which it has access to. Similarly, only a zone manager can push session slot monitoring 

information regarding owned services. 

• A modular decomposition of each of the key domain functions into independent internal 

software components, each of which having its own internal standardized (REST) interface. This 

allows to efficiently upgrade or add new functionality or features in existing or new modules 

without impacting the other modules.  
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• State and configuration data is maintained in a highly available distributed key value store such 

as ETCD [ETCD01], facilitating the implementation and management of a distributed modular 

domain orchestrator. All configuration and service state data are automatically replicated and 

synchronized across multiple peers, allowing seemingly local access to the stored data. 

• Scalability and high availability of each of the functional components can be implemented, by 

replicating across multiple (potentially distributed) instances, leveraging the replicated key value 

store for keeping all instances in sync with each other. For implementing high availability, the 

various replicas of the functional components of the domain orchestrator could be deployed 

across multiple execution zones that are registered in that domain. 

 

Figure 22 – Updated high-level design of a FUSION domain orchestrator 

We now briefly discuss each of the functional components depicted in Figure 22. The corresponding 

concepts and algorithms have been discussed already in detail in Section 2. Evaluation of these 

algorithms and concepts can be found in Section 4 as well as in Deliverable D5.2. 

• Registry 

This component is responsible for the registration of new and querying of existing FUSION 

services. Upon registration, the service information (specified in the TOSCA manifest) will be 

stored in a data or file store along with all necessary bookkeeping. At the end of service 

registration, the scaling component may be triggered implicitly or explicitly to start scaling that 

service across a number of zones, based on the load patterns provided in the manifest. Note that 

service updates provided by the service provider (e.g., to change some of the operational 

parameters or provide a (minor) update of the service), will also be handled by this module. 

• Scaling 

Based on load patterns or an explicit deployment/termination request, this component will 

appropriately deploy or terminate sessions of a particular service in one or more zones. This 

component only is responsible for deciding whether and when some scaling action needs to be 

performed at domain level, for which various algorithms can be used. Note that this scaling 

component could also be used for deciding whether the FUSION domain itself need to be scaled 

up or down, for example in terms of number of active execution zones in a particular region. 
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• Deployment 

The role of this component is to coordinate the effective deployment or termination of a service 

in one or more zones (or even of execution zones in particular DCs). This component will first 

trigger the placement component to decide in what zone(s) a particular number of session slots 

need to be created, added or removed. Afterwards, this component will communicate with the 

necessary execution zones to coordinate the deployment actions in each zone. 

• Placement 

This component decides how many session slots need to be created, added or removed in 

particular execution zones, based on scaling information, the execution zones and networking 

information as well as the application-specific requirements as expressed by the evaluator 

services. For the latter, the placement function communicates with the corresponding selected 

execution zones to trigger the relevant evaluator services. This may involve first registering the 

service and its evaluator service, for which it will also contact the zones. Several algorithms and 

strategies for domain placement have been described in Section 2.7. 

• Monitoring 

The role of this component is to provide monitoring information regarding the services (e.g., 

session slots), execution zones, as well as particular networking information, which can be 

leveraged by several entities, such as the scaling and placement component as well as the service 

providers or domain admin to query the current runtime state and health of his services or 

environment, respectively. 

3.2.2 Implementation 

For the implementation of an initial domain orchestrator prototype, we started with a more 

simplified implementation in which all functional components are integrated within a single module. 

The initial goal was to validate the inter-layer domain orchestration protocols by building an initial 

skeleton implementation. 

For this skeleton prototype implementation, we use Python as programming environment and 

leverage the Flask framework and Flask-Restful module to be able to implement the REST APIs with 

little overhead. Ongoing work involves breaking down the prototype in smaller functional units and 

implementing the private REST APIs in between these subcomponents. 

A summary of the implementation status is depicted in Table 3. 

Table 3 – Implementation status of domain orchestrator prototype 

Status Task Comments 

Done Initial API skeleton 
Setup of initial skeleton implementation with all key 

public REST APIs in Python/Flask 

Done Docker container Wrapping the prototype in a Docker container 

Done Initial implementation 

Initial implementation of the key domain 

orchestrator functionalities, such as registering 

users, zones and services, as well as placing and 

deploying new services in the zones  

Done Persistent state  Dumping all relevant state in a key value store 

Active Functional decomposition Decompose the monolithic domain orchestrator 

into several subcomponents. Initial decomposition 
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already implemented for domain placement. 

Planned Automatic scaling Implement domain scaling based on load patterns. 

Planned TOSCA 

Implement support for TOSCA manifests. The 

current implementation assumes simple JSON 

manifests. 

 

3.3 FUSION zone manager 

3.3.1 Design 

In Figure 23, an updated version of a zone manager is depicted. We assume here that the zone 

manager is a lightweight overlay layer on top of a DC and DCA, where all lower-level and DC-specific 

deployment details are handled. As discussed earlier, other possible designs include integration of 

the DCA layer and the DC itself, in which case the design would change and would have to 

incorporate also more lower-level MANO functionality.  

As such, a lightweight zone manager is mainly concentrated around two key high-level FUSION 

concepts: 

• Handling session slots for doing service scaling, load balancing of incoming service requests, and 

propagation of service availability into the resolution plane; 

• Handling evaluator services for evaluating the placement of FUSION application services in 

particular DC environments (e.g., different DC instance types). 

Many other design decisions, such as a common public interface, a modular decomposition of 

scalable and high-available components with a automatically replicated data store, are similar to 

those of the domain orchestrator.  

Two notable differences are the role of the load balancer, where FUSION clients (i.e., the light-blue 

avatars) (in)directly connect to when trying to connect to a particular service, and the zone gateway, 

for injecting session slot information into the FUSION resolution plane. The load balancer forwards 

incoming service connections to the best service instance (based on zone policies and slot 

availability) based on incoming TCP connections instead of REST calls. 
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Figure 23 – Updated high-level design of a FUSION zone manager 

We now briefly discuss each of the functional components depicted in Figure 23. From a high-level 

point of view, the design looks slightly more complex than a domain orchestrator. This is because the 

zone manager is in the centre of all FUSION layers, with the domain orchestrator above, the service 

resolvers and DCA below, handling the incoming service connection requests and the interaction 

with the evaluator services. Below an overview of the core functionality of each of the key 

components. 

• Registry 

This component handles incoming requests from a domain orchestrator regarding registering 

and changing the number of session slots of particular services. This may directly or indirectly 

trigger the scaling component to start deploying or terminating service instances, based on the 

updated amount of session slots and the internal zone manager policies (e.g., eager versus lazy 

scaling). 

• Placement 

The main role of the placement component in a thin ZM model is to manage the incoming 

evaluation requests from the domain orchestrator and to trigger the corresponding evaluator 

services for calculating the necessary scores, and for eventually preparing a proper offer towards 

the domain orchestrator. A key aspect in this role is to be aware of the various execution 

environments of the underlying DCA, the requirements of the application service, and the 

internal deployment policies (e.g., a zone may want to reserve its GPU-capable nodes for the 

most demanding services that may bring the most revenue, which will be reflected in the pricing 

strategy).  

• Scaling 

This component on the one hand is responsible for implementing the deployment requests 

coming from the domain orchestrator and that were negotiated via the evaluation offers. On the 

other hand, we also envision that a zone manager may have the flexibility to autonomously scale 

the number of active instances, based on the actual incoming demand, rather than always be 
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required to have the maximum number of slots available. This allows for better resource 

consolidation and higher revenue. It is however the responsibility of the zone manager to ensure 

that enough slots are available when there is a sudden spike of incoming service requests. As 

such, apart from intelligent scaling algorithms, fast lightweight deployment mechanisms such as 

containers can help implementing more lazy deployment strategies with minimal penalty. Note 

that we envision that this Scaling component in the future could also delegate some of its elastic 

scaling functionality by implementing them as a plug-in or hook onto the underlying cloud 

orchestration layer. We hence coloured this component partially green and partially grey. 

A second function includes deciding whether to dynamically scale the effective size of the 

execution zone on top of the underlying DC. For example, on a cloud DC, a zone manager may 

start by enabling only a limited amount of (virtual) environments in which to deploy FUSION 

service instances, but dynamically scale as more services are being handled by that zone. This 

elastic scaling of a zone is managed by the zone admin, which can set and update upper and 

lower bounds. 

• Deployment 

This component  is responsible for deploying or terminating service instances by delegating and 

coordinating with the underlying DCA layer. A secondary function includes requesting the DCA 

layer to add or remove environments within the underlying DC, dynamically growing or shrinking 

the effective size of the execution zone in that DC.  

• Monitoring 

This component manages (and aggregates) the available resource and service session slots, and 

updates them in the data store. Changes in session slot availability will typically trigger the 

scaling and zone gateway components to take some actions. Another role of this component is to 

collect information on the utilization and efficiency of the various DC environments offered by 

the DCA.  

• Load Balancing 

In FUSION, we envision that execution zones can aggregate session slot information from 

multiple service instances and present them as coming from a single service instance to the 

service resolution plane. In such case, incoming service requests need to be properly balanced 

across the various service instances. Although this functionality could be implemented by the 

services themselves for finer-grained control, we also envision that a zone manager can provide 

a default implementation for services that do not require service-specific balancing. For this load 

balancing, the available session slot information can be leveraged for doing intelligent load 

balancing based on available slots, and take into account execution zone (scaling) policies, 

instead of random or CPU-load related load balancing mechanisms. 

As with the Scaling component, we envision that this component could be implemented as 

partially integrated or leveraging the capabilities of the underlying cloud infrastructure.  

• Zone Gateway 

Last but not least, this component has the crucial role of providing updates regarding service 

availability by timely injecting session slot updates into the connected service resolution plane, 

as discussed in significantly more detail in Deliverable D4.2. 

3.3.2 Implementation 

For the implementation of the zone manager prototype, we used a similar approach as for the 

domain orchestrator. The goal of the initial skeleton prototype was to validate the public interfaces. 

As such, in the initial prototype, each of the subcomponents are integrated in a single module. We 

used a similar Python/Flask based environment and framework for efficiently implementing the 
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skeleton prototype. Current work involves breaking down this monolithic prototype in the various 

subcomponents as depicted in Figure 23 and implement their corresponding private interfaces. A 

summary of the implementation status is depicted in Table 4 below. 

Table 4 – Implementation status of zone manager prototype 

Status Task Comments 

Done Initial API skeleton 
Setup of initial skeleton implementation with all key 

public REST APIs in Python/Flask 

Done Docker container Wrapping the prototype in a Docker container 

Done Initial implementation 

Initial implementation of several key zone manager 

functionalities, such as handling high-level service 

state management, managing service instances, 

evaluator services, and session slots  

Done Multi-config. instances 
Adding support for sharing service component 

instances across multiple services 

Active Persistent state Dumping all relevant state in a data store 

Active Functional decomposition 
Decompose monolithic zone manager into several 

subcomponents 

Planned Automatic scaling 
Integrating the scaling mechanism of Section 2.8 

into the main prototype 

Planned Placement 

Efficiently dealing with heterogeneous 

environments for doing (evaluator-based) 

placement 

Planned Zone Gateway 
Integrating with the zone gateway / service resolver 

implementation of WP4 

 

3.4 FUSION DC adaptor 

3.4.1 Design 

The goal of the DC adaptor layer (DCA or DCAL) is to be the glue between the high-level FUSION zone 

manager and the underlying DC and its corresponding DC management and orchestration (MANO) 

layer. As such, depending on the characteristics of the DC and its MANO layer, different DCA 

implementations may be completely different in nature. We see three main cases: 

• Physical DCA: in one extreme case, a DCA has direct access to the physical compute nodes and 

network infrastructure, all of which can be fully configured and customized by the DCA layer.  

• Virtual DCA: in the other extreme case, a DCA needs to run on an existing cloud environment 

such as Amazon EC2 or OpenStack in an OTT-like model, meaning it only has access to the set of 

virtualized environments and capabilities offered by the DC MANO layer.  

• Hybrid DCA: in between, one could imagine the case where the FUSION DCA functionality or 

capabilities are (partially) implemented in the existing DC MANO layer or has hooks into the 

existing MANO layer for better QoS management of the demanding FUSION applications on the 

existing DC, by exposing particular enabling APIs and capabilities. 
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To be able to accommodate all three cases and to avoid overlap in implementation of the FUSION 

zone manager and the underlying DC MANO layer, one of the design goals of the DCA layer we set, 

was to put the northbound interface towards the zone manager as high as possible, meaning that a 

zone manager should only be dealing with the FUSION-specific functionality and not have to deal 

with the lower-level details regarding managing the physical resources or mapping FUSION instances 

onto the underlying physical or virtual infrastructure. 

As a result, the thickness and complexity of the DCA layer may vary significantly depending on the 

three cases mentioned above. In the physical DCA case, the DCA layer needs to implement all these 

lower-level resource management functionality (possibly using existing infrastructures such as 

OpenStack, CoreOS, etc.), but has the advantage of having direct access to the underlying physical 

resources. In the virtual DCA case, the role of the DCA layer is mainly to translate FUSION 

deployment requests onto the underlying DC MANO APIs, resulting in a rather thin DCA layer, at the 

expense of possibly limited control of the underlying resources and QoS. For services with very 

stringent requirements, this may be difficult or result in elevated runtime costs, which eventually 

result in elevated service deployment costs; for less demanding services or DCs with proper QoS 

management capabilities, this may be more than sufficient. The hybrid case combines the best of 

both worlds but requires proper agreements and support from the DC provider. 

In Figure 24, three example DCA designs are depicted, one for each case. In the following sections, 

we describe these designs for each of the three cases in a bit more detail. Obviously, multiple designs 

are possible depending on the characteristics of the underlying DC infrastructure and platform.  

   

(a) Physical DCA (b) Virtual DCA (c) Hybrid DCA 

Figure 24 – Example DCA designs 

As discussed in Section 2.5.3.3, a key role of the DCA layer with respect to monitoring is also to 

abstract the underlying infrastructure and platform capabilities in a number of (possibly annotated) 

abstract execution environment types. Each environment represents a particular set of physical or 

virtual resources (a classical Xeon-based rack server, a micro-server, an EC2 c3.xlarge instance type, 

etc.) that are configured by the platform in a certain manner (e.g., a NUMA-aware environment, a 

RT-guaranteed environment, etc., see also Sections 3.5 and 4.3).  

For particular DCs and DCA layers, the number of environment types can easily become quite 

significant, in which case it is up to the zone manager to efficiently deal with these types of 

environments, for example by smartly grouping or clustering different environment types based on 

the annotated data or evaluation scores for particular services, and by smartly deploying a number of 

evaluator services across a number of these environment types. 
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3.4.1.1 Physical DCA design example 

Figure 24 (a) depicts a possible design for a physical DCA, where the DCA has direct control over the 

physical infrastructure. Key functional components there include the following: 

• Monitoring 

This component collects both static information on the available hardware resources, as well as 

runtime information on how these hardware resources are being used. This is mainly used for 

internal purposes. The DCA layer automatically extracts a number of environment types out of 

this information, which is presented as such towards the zone manager. 

• Placement 

This component is used for two purposes. First, the zone manager will use this to determine the 

optimal type of environment a particular service instance should be deployed, leveraging the 

evaluator services for that purpose. Second, the deployment component uses this component 

for determining where to deploy a new FUSION instance (given a particular environment type) 

and how that environment need to be configured appropriately.  

• Deployment 

This component is responsible for preparing both the chosen environment (i.e., configuring both 

the hardware resources as well as underlying platform), as well as preparing the service instance 

to be deployed for actual deployment. This includes appropriately encapsulating the service 

instance, doing all provisioning, preparing the ETCD store with all service configuration and 

instantiation parameters, and booting the instance. When the service is terminated, the instance 

and its environment need to be cleaned up appropriately so that it can be reused for other 

instance deployments. 

3.4.1.2 Virtual DCA design example 

Figure 24 (b) depicts a possible design of a virtual DCA (e.g., a DCA deployed on top of a full 

OpenStack environment), where the FUSION DCA service provides a FUSION-enabled PaaS layer on 

top of the existing DC platform. In this case, the DCA typically only has control over a limited set of 

virtualized environments (e.g., different flavours in OpenStack or instance types in Amazon EC2). As 

such, the main task of the DCA components is about mapping FUSION requests onto the DC-specific 

APIs and vice versa, as well as optimally mapping/wrapping FUSION services on top of the virtualized 

environments. For example, if the underlying DC only supports VMs and the FUSION services are 

containers, the DCA needs to create appropriate VMs in which it can efficiently deploy one or more 

FUSION service containers. The key functional blocks and their functionality include: 

• Monitoring 

The role of this component relates to both identifying the various types of virtualized 

environments, as well as monitoring their runtime behaviour and virtual resource consumption 

as particular (sets of) FUSION instances are deployed in such environments. This can be used to 

evaluate the performance and reliability of each virtual environment over time, as well as to 

determine the amount of spare capacity in each virtual environment for future service 

deployments (e.g., in case the same virtual environment is reused for deploying multiple FUSION 

instances). From these virtualized environments, more abstract (annotated) environments are 

derived, which are presented as such to the zone manager. 

• Placement 

The role of this component is to encapsulate the various virtual environments as different 

environment types towards the zone manager as well as provide runtime-based information to 
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the deployment function regarding what existing virtual environment could be reused, or 

whether a new virtual environment (instance) need to be created and prepared first.  

• Deployment 

This component is responsible for mapping FUSION instances onto the virtual environments. In 

case there is a one-to-one mapping between a FUSION instance and a virtual environment (e.g., 

a VM), this deployment operation could be relatively straight-forward. In case a single virtual 

environment is reused for deploying a number of FUSION instances, then a more complex 

deployment implementation is required. 

3.4.1.3 Hybrid DCA design example 

In Figure 24 (c) an abstract representation of a hybrid DCA is depicted. In this case, the underlying DC 

MANO layer has appropriate FUSION-enabled hooks for integrating several FUSION-specific aspects 

and concepts more tightly in the underlying software platform. Each of the key functional 

components (e.g., scaling, placement, monitoring and deployment) could have special hooks that 

allow for better control or a tighter feedback loop. One notable example of this is regarding session-

slot based elastic scaling (see the next section). 

3.4.2 Implementation 

We currently have two implementations. One implementation is an example of a hybrid case, where 

we implemented a FUSION session slot based scaling mechanism by adding and integrating extra 

FUSION-aware capabilities in an OpenStack environment (see also Section 2.8.3). More specifically, 

we added functionality to Ceilometer [CEIL01] (which is the OpenStack monitoring module) to collect 

session slot information in OpenStack. Secondly, we augmented HEAT (which is the OpenStack 

orchestration module) to enable automated scaling in or out of service instances based on 

predefined boundaries and actual session slot usage.  

By integrating this functionality in an existing cloud MANO infrastructure, FUSION service scaling can 

be delegated towards the underlying layer, allowing for a shorter feedback loop and tighter 

integration with the underlying infrastructure, and reducing the role and overhead of the zone 

manager in such environment.  

A second prototype implementation is related to the integrated end-to-end prototype 

implementation. In that implementation, we developed a prototype of a simple physical DCA 

implementation, where FUSION services can be deployed on a single physical host using either 

Docker containers or KVM-based VMs. The main goal of this implementation is to validate the core 

FUSION interfaces between a zone manager and a DCA implementation, as well as to validate the 

end-to-end actual deployment and usage of FUSION (application and evaluator) services wrapped in 

Docker containers on a physical environment.  

Ongoing work involves integrating that prototype in the vWall infrastructure, integrating the various 

components from the various partners on the shared environment, as well as providing a more 

advanced implementation of a DCA prototype that integrates with the heterogeneous cloud platform 

discussed in the next section.  

A summary of the implementation status of the various DCA prototypes is depicted in Table 5. 

Table 5 – Implementation status of DCA prototypes 

Status Task Comments 

Done Openstack/HEAT scaling  

Evaluation and validation of session-slot based 

service scaling in an industry de-facto standard 

cloud environment 
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Done Initial API skeleton 
Setup of initial skeleton implementation with all key 

public REST APIs in Python/Flask 

Done Docker container 

Wrapping the prototype in a Docker container, 

managing other containers on the host from within 

a container. Note that we also added support for 

deploying all higher-level FUSION functions (e.g. a 

zone manager) on top of our DCA layer. 

Done Initial implementation 

Initial implementation of a simple physical DCA, 

implementing the basic DCA functionalities within a 

single host, supporting both Docker containers and 

KVM VMs. 

Done Multi-config. instances 
Added support for sharing service component 

instances across multiple services 

Done Persistent state 
Managing both DCA state as well as service and 

instance configuration state 

Active vWall integration 

Integrating this prototype on top of the vWall, both 

native as well as on top of OpenStack and/or an 

environment such as CoreOS. 

Planned Heterogeneous platform 
Add support for more heterogeneous cloud 

platforms with different environments 

 

3.5 Heterogeneous cloud platform 

3.5.1 Design 

Referring back to Section 2.2.1, the goal is to be able to automatically deploy demanding or time-

sensitive applications in a cost-efficient manner on existing an novel cloud platforms and 

infrastructures, while providing a particular QoS towards these types of applications, for example by 

providing a better performance isolation in between such applications (see also Section 4.3.2.6). A 

conceptual drawing of how we envision automated service deployment in a heterogeneous cloud 

platform is shown in Figure 25. 

 

Figure 25 – Conceptual diagram of a heterogeneous cloud platform 
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From a high-level point of view, we envision three key steps that need to be integrated with each 

other in a continuous optimization cycle: 

• On the one hand, we need to capture the requirements of applications and services through 

offline and online profiling and monitoring, to get an accurate view of the application behaviour 

on particular execution environments. For example, is the application memory-intensive, 

network-intensive, is it sensitive to packet latency, etc. 

• On the other hand, we also need to characterize the capabilities and constraints of the various 

resources, hardware infrastructures and platforms, capturing both static and runtime 

information regarding each of these environments. 

• Thirdly, we need to (continuously) optimize the placement and configuration of the different 

workloads on the available execution environments, by selecting the optimal resources and 

platform for deploying each application, minimizing cross-interference amongst the various 

workloads, and configuring the platform and resources to maximize throughput while minimizing 

jitter. An example of this is discussed in Section 4.3.2, where we illustrate an improvement of up 

to a factor 2x-3x when doing NUMA-aware placement configuration optimizations on a particular 

infrastructure for memory-bound applications. In that section, we also demonstrate the positive 

impact of providing better RT guarantees towards demanding and time-sensitive applications. 

To implement this, we constructed the following initial monitoring architecture and design as 

depicted in Figure 26. 

 

Figure 26 – Initial high-level design of a heterogeneous cloud monitoring platform 

At the platform level, key building blocks and components include the following: 

• Optimized placement and deployment, where the main responsibility is to determine the most 

optimal compute node for deploying a particular applications, based on the compute node and 

application profile. Note that in first deployments of unknown applications or on unknown 

hardware, the initial deployment may be suboptimal, but may improve for further deployments. 
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• Platform optimizer, whose responsibility is to manage the runtime state of applications and 

infrastructure resources, and trigger changes when needed (e.g., in case an application is causing 

too much destructive interference). 

• Platform monitoring, whose responsibility is to collect, aggregate and analyze all monitoring 

data from all compute nodes, and forward this to the other components. Some of this 

information will be forwarded to the higher FUSION layers, such as application metrics and the 

set of abstracted environments.  

• Application and node profiles, that are constructed from the monitoring data and which is 

subsequently used for further deployments of applications and management of the various 

compute nodes. 

Within a compute node, we foresee the following key blocks: 

• Node controller, which is responsible for deploying an application service on the compute node, 

creating the necessary environment and configuring the platform and (performance) isolation 

mechanisms. This controller is also responsible for throttling or reconfiguring applications or 

their surrounding environments in case something goes wrong at runtime. 

• Monitoring agent, which is responsible for measuring and collecting all relevant data from both 

the compute node itself as well as the application environment. 

• Application environment, which is the environment created by the node controller for isolating 

applications on a compute node from a functional as well as performance perspective.  

In the final year of this project, we will present a more detailed design of a heterogeneous platform 

as well as how this is integrated into the FUSION service layers, specifically the DCA and Zone 

Manager.  

3.5.2 Implementation 

Based on the various lower-level dedicated experiments we have done (see also Sections 3.7.3 and 

4.1), we are currently starting to implement a prototype implementation for such feedback-driven 

optimized heterogeneous cloud platform. The goal is to have a PoC environment that demonstrates 

the benefits of overall concept through a number of specific use cases. We will also link this with a 

corresponding DCA implementation and evaluate the role and impact of specific evaluator services in 

the overall platform. For this, we will leverage many of the enabling technologies and mechanisms 

for providing better resource efficiency and RT guarantees, for which we already have done a wide 

range of experiments, of which a summary is provided in the evaluation part in Section 4.3. 

As a first step, we already started implementing a profiling tool for characterizing the key runtime 

characteristics of a particular VM or container. In Figure 27, an example is depicted of a few of these 

characteristics for a media format conversion benchmark. Specifically, we show CPU utilization, 

memory throughput, and CPU power consumption (block storage and networking metrics are not 

depicted to save space). The application-specific monitoring data is depicted by the yellow regions; 

the rest involves the booting and termination of the VMs. Note that these are just a few of the 

numerous low-level infrastructure and platform metrics we intend to capture (dynamically and 

intelligently) while profiling and monitoring new applications on a new infrastructure. 
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CPU Utilization 

 

Instructions-per-cycle 

 

Memory throughput CPU power consumption 

  

Figure 27 – Example profiling data, covering the most relevant resources for that benchmark 

Based on this profiling data, we then create an overall application profile on a particular 

environment. An example normalized high-level profile is depicted in Figure 28 for the same media 

conversion benchmark used earlier. In this example, the application clearly is memory-bound, for 

which memory-specific platform optimizations may apply. This high-level profile provides insights in 

the main characteristics of a particular application with respect to the type and intensity of the 

various resources that are being used. We plan to extend and use these profiles for optimizing how 

applications should be deployed on particular resources. 

 

Figure 28 – High-level normalized profile for the memory-intensive media conversion application 
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A summary of the current status of this work is provided in Table 6 below. 

Table 6 – Implementation status of a heterogeneous cloud platform 

Status Task Comments 

Done Initial high-level design 

Define initial high-level approach for efficiently 

deploying demanding applications in a 

heterogeneous cloud environment. 

Active Profiling infrastructure 
Setting up an initial profiling infrastructure, building 

a framework based on existing tools. 

Active Refined design 
Refining initial design based on initial profiling data 

and experimental results. 

Planned Dynamic profiling  
Improved dynamic and flexible profiling and 

monitoring infrastructure. 

Planned DCA Integration 
Integration into a FUSION DCA prototype and 

demonstrate benefits for FUSION applications 

 

3.6 FUSION orchestration protocol specifications 

This section covers the overall design decisions and format for the FUSION orchestration and 

management interfaces. We also elaborate on the current implementation status of these 

specifications. For the full overview of REST APIs, we refer to Section 7. 

3.6.1 Design 

As mentioned before, we designed both the inter and intra layer protocols based on RESTful 

principles. REST has the advantage of being a lightweight cloud-friendly protocol on top of the 

prevalent HTTP protocol for which many excellent implementations and frameworks already exist. 

For these good reasons, REST has become one of the de-facto standard protocols in the Internet and 

Cloud for managing resources and state.  

As such, we designed all FUSION orchestration and management related interfaces using REST 

principles, focussing on the various resources that FUSION manages (e.g., services, instances, zones, 

slots, offers, etc.). 

With respect to authentication and authorization, we rely on the available mechanisms built into 

HTTP and HTTPS for authenticating incoming requests, which could also be combined with 

authentication tokens as is done in OpenStack [KEYS01]. All entities, both physical entities as well as 

software components, first need to be registered to the relevant component before being able to 

perform particular actions on that component. For example, a service provider first needs to be 

registered before it can start registering and deploying services. Similarly, a zone manager software 

component first needs to be registered to a domain orchestrator before it can register itself and 

interact with a domain. Each registered entity has one or more associated roles with which it can 

perform a subset of all operations as well as have access to a subset of all operations. Typical roles 

include an admin (user), service provider (user), domain orchestrator (SW component) and zone 

manager (SW component). 

This concept of users and roles enables to define only a single one public (REST) interface for each 

key FUSION component, where all interactions with the external entities are managed. Within such 

FUSION component (e.g., a domain orchestrator or zone manager), there may however also be 
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internal APIs so that each subcomponent (e.g., FUSION domain scaling) can communicate directly 

with the other subcomponents (e.g., FUSION domain deployment).  

We mainly used JSON in our prototype implementation. As such, we also present the REST API 

functions using JSON syntax. 

Note that for all JSON response messages, we currently assume the following basic structure: 

{ 

  “status”: “FUSION status code”, 

  “message”: “FUSION status message”, 

  “response”: <FUSION response body> 

} 

As such, to avoid unnecessary repetition in all REST API specifications, we will only provide an 

example response body. The FUSION status codes augment the existing HTTP status codes when 

resources are for example created (201), queried (200) or deleted (204), and apply especially when 

something goes wrong. 

Below an example REST specification regarding FUSION services in an execution zone. The HTTP 

headers regarding authentication, message format, expiration, etc. are not depicted. 

 

/1.0/services 

GET Returns a list of all registered services in this execution zone, along with their current state 

and session slot information. 

REQUEST PARAMETERS 

Parameter Type Short description 

None   

EXAMPLE RESPONSE 

[ 

  { “serviceid”: “epg1.bell-labs.be”,  

    “state”: “deployed”, 

    “slots” : {“total”: 100, “free”: 25} 

  }, 

  ... 

] 

POST Register a new service in this execution zone. 

REQUEST PARAMETERS 

Parameter Type Short description 

serviceid String Unique service name or identifier 

manifest TOSCA Full description of the service to be registered in the zone. 

EXAMPLE RESPONSE 

{“state”: “registered”} 
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3.6.2 Implementation 

As mentioned before, the FUSION prototype components are being implemented in Python, using 

the Flask and Flask-Restful modules. This allows us to focus on the APIs and their corresponding 

functionality, rather than having to spend much effort in implementing and parsing the REST 

interfaces, or using complex but flexible and highly optimized frameworks. 

Using these frameworks, we already implemented the key public interfaces, implemented initial 

working implementations, as well as integrated already all key components in a working initial 

prototype using these public interfaces, as is described also in more detail in Deliverable D5.2. This 

integration effort serves two purposes, namely to validate the APIs and to evaluate the FUSION 

functionality and coordination of the various FUSION layers. 

We are currently designing and implementing also the internal interface of the various 

subcomponents, upon which we will document in more detail in the next deliverable together with 

the finalized version of the public interfaces. 

The full details on the public interface specification can be found in Section 7. 
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3.7 Inter-service communication protocols 

3.7.1 General 

Composite services and collaborating services are interconnected services whereby overall service 

behaviour and performance is partly determined by the interconnecting communication and the 

characteristics of the interconnecting platform. 

In FUSION, an architecture model is envisioned where re-usable components are maximized when 

architecting a service so that at run time, the reuse of components can be maximized. This inherently 

implies the use of inter-service communication protocols. 

Depending on where collaborating services are instantiated, communication channels and their 

characteristics can differ.  An exemplary overview of throughput and latency for some available 

interconnect technologies and service models is given in Table 7
4
. 

Table 7 – Performance characteristics of different inter-service communication paths 

 

Note: for IVSHMEM, only 367 Mbps was currently measured, although for IVSHMEM, at least 15000Mbps should be attainable (and 

possibly up to 100000Mbps). Only 367Mbps was listed here because of memcpy taking too long. Likely this is because of non 

cacheable memory copies needing to go over pci for every memory access. The root cause analysis of this problem was not 

yet finished at the moment of writing of this document) 

From those results, it becomes clear that choosing and optimizing the most appropriate inter-service 

communication channel can have significant impact on throughput and latency. Concerning the 

architecture of services and specifically regarding the communication between two services or 

service components, the following observations can be made:  

1) Previous technologies like CORBA [CORB01], DCOM [DCOM01], etc. were designed to have 

services communicate with one another as if all communication is modelled as a local function 

interaction, even if the communication takes place over a e.g. a switched network. In other 

words, the underlying communication mechanism/infrastructure is abstracted away. The issue 

however is that the bandwidth and latency are vastly different in case the communication is 

over: 

• an actual network  

• between processes or OS threads on a single machine 

• between threads within a process 

The infrastructure and the way services are deployed on these infrastructures can impact the 

overall design of such services. For example, in case a service has such high performance or soft 

real-time requirements, it may not be possible to model such a service as a graph of 

collaborating service components, especially if the various abstraction layers are unaware about 

                                                           
4
 The figures listed were obtained on and between 2 SuperMicro H8DGG servers with two AMD Opteron 6174, 

1Gbps Intel NICs and Mellanox connectX3 interfaces 40Gbps with RoCE. 

Inter 

Container

TCP via 

loopback 

ip

TCP via 

loopback 

IP +NUMA-

pinning

TCP via 

Linux 

bridge 

+NUMA-

pinning

TCP via 

Linux 

bridge 

+NUMA-

pinning ivshmem netcat

TCP via 

Linux 

Bridge

TCP ISCP 

via 1Gb 

itf

TCP 

offload 

RoCE via 

40Gb itf

Throughput (Mbps) 27120 30028 8791 870 367 266 9200 960 24353

Latency (usec) ~15 ~12 ~13 218 12 220 17.7 74 962

Inter-Process Inter-VM Inter-Process

Intra-host communication Intra-host 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 81 of 136

 

Copyright © FUSION Consortium, 2014 

the service requirements and vice versa, the service is unaware of the underlying interconnecting 

network capabilities.  

The above indicates that in order to optimize the overall system behaviour, there is a need to 

describe the various characteristics of the services themselves and the interconnecting 

infrastructure, e.g. in a manifest or through evaluator services that can specifically test for the 

existence of particular communication channels and their corresponding capabilities. 

2) The current approach to service architecture and modelling is to have collaborating services 

communicate over a network even when there is no real network involved (e.g. in case of 

communication within a single host). This architecture mainly originates in the use of 

virtualization (virtual machines, multi-tenancy onto single hosts etc.) and clear separation of 

functionality under the form of re-usable component software.  This approach is also made 

possible through e.g.:  

• the use of  highly efficient lightweight threading  such as go-routines or gevent [GEVE01] in 

Python; 

• the use of message-oriented patterns popularized by Go channels or Erlang/OTP [ERLA01]. 

In this second approach, the “network” is actually exposed and parameterization and 

optimization of the “network” can be achieved to the benefit of service performance and 

robustness. 

However, (considering the second option described  above), with the introduction of a network 

between services components, concepts like packetization, MTU, routing etc. get introduced as well.  

The “network” between components is tunable or parameterizable  into  a wide variability, e.g.: 

• On a single host, when passing a message from one service component to the next, the MTU 

could actually be set quite large in such a way that the entire message can fit into one packet. 

For example, in case of shared memory communication protocols such as IVSHMEM, one entire 

message or frame could be sent as one packet. 

• In case of collaborating services in a single data centre with networks that generally are 

characterized by high bandwidth and low latency interconnects, the overall benefit at the level of 

the data centre is optimal use of nearness/locality of collaborating components through 

minimizing network resources. Further improvement can be obtained by tuning the service 

component interconnections (e.g. via DCTCP, see further). 

• In case of collaborating components residing on two different hosts with high compute capability 

and with an interconnecting network that is characterized by low bandwidth and high latency, 

the injection of compression functionality can contribute to overall service improvement and 

load density. 

• Non-functionals like injection of security only have to be provided on a need basis. For example, 

if one owns the host and the services that run on it, one can get higher service loading density 

with no security). 

In case tuning is not done or in case the characteristics of the network layer are not taken into 

account, suboptimal network loading and behaviour can impact composite services or collaboration 

services and also impact the overall usage of the infrastructure that translates in direct economical 

impact. 

From the previous arguments, in order for cloud orchestration to take advantage of the benefits, it 

needs information about: 

• the configurability of the hosting and networking infrastructure and parameterization  



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 82 of 136

 

Copyright © FUSION Consortium, 2014 

• the service’s adaptability and configurability towards the infrastructure that it will be hosted 

upon.  Specifically for networking, this indicates that the service description needs to be able to 

describe what metrics it wants from the interconnect, or be able to test available capabilities via 

the evaluator services.  

The TOSCA specification already provides service graph specification, is standardized in OASIS and 

has traction in cloud and NfV domains. Through extension of TOSCA at the level of  

• service and infrastructure monitoring specification 

• specification of service and interconnection constraints (allowing to describe what is expected of 

the realization of a service graph description. 

and through the use of appropriate TOSCA engine functionality in the FUSION framework, the 

envisioned inter-service communication can be optimized.  

3.7.2 FUSION late binding 

Currently, the communication paths between collaborating services are mostly determined at service 

design time and therefore are rather static and still largely oriented towards TCP/IP because of 

general availability. However, at service instantiation or relocation time, the actual infrastructure 

onto which the service is realized is selected and configured.  

Late binding or determining the appropriate communication channel between two services at service 

instantiation or even service invocation time allows for a better use of the infrastructure both at 

service level as well as overall orchestration level. Tuning the selected communication channel 

further improves efficiency of both levels. The following paragraphs describe the  approach taken to 

realize late binding. 

To categorize the different levels in service deployment and how efficiency can be introduced, the 

following service deployment states in orchestration are considered/distinguished:  

1) Select platforms and network interconnects (based on metrics describing the network)  

2) Instantiate service decision (e.g., evaluating requirements described for the service against the 

available infrastructure) 

3) On actual instantiation, tune service component interconnects (e.g., setting default MTU in VMs, 

setting default TCP window size, ...) 

To enable late binding for each of these stages, the following is required: 

1) Through specification in service description and through infrastructure description and runtime 

generated information 

2) Placement algorithm needs to account for different inputs and requirements 

3) With service specification as input, and input of infrastructure configuration information, 

perform the necessary configuration actions in the infrastructure (VMs, containers, network 

layer, ...) 

An alternative approach is that at instantiation time, the infrastructure (host) and data centre 

management activates a network optimization without FUSION or the service being aware that the 

underlying infrastructure is tuned or optimized. In such case, FUSION cannot directly impact the 

overall optimizations except from observing (e.g., through the evaluator services) that the 

communication path on such infrastructure is more optimal. 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 83 of 136

 

Copyright © FUSION Consortium, 2014 

3.7.3 Late binding considerations 

Different networking technologies can be used for inter-VM communication from which some are 

discussed in the following paragraphs. The technology evaluation and actual measurements are 

described in Section 4.5.  The aim is to indicate:  

• the intricate configuration aspects of the different networking technologies; 

• describe in short the data plane benefits each technology can offer; 

• the configuration aspect of their use in inter-service communication.  

The latter topic will indicate the diversity of the technologies and serves as an input for deciding the 

abstraction and specification level that a service manifest should deal with when specifying 

networking requirements of a service at design time. 

3.7.3.1 SR-IOV Inter-VM communication  

3.7.3.1.1 Technology 

An explanation on Single Root IO Virtualization technology can be found in [SRIO01]. In essence, SR-

IOV provides a hypervisor bypass so that VMs each can attach to a separate Virtual Function and 

share a single physical PCIe device (e.g., a NIC or GPU card). 

An SR-IOV NIC supports multiple contexts on top of a single physical context. Each context is then 

represented as a PCI device that can be passed through to the VMs. A context on top of the physical 

context is used when passing through this SR-IOV interface towards a VM. The physical context is 

under control of the host itself.  Communication between SR-IOV and host (regular) or between SR-

IOVs is performed on the NIC itself. (Figure 29 is obtained from figures 4 and 5 in [SRIO02] and 

highlights the concepts of SR-IOV technology.) 

 

  

Figure 29 – SR-IOV architecture 

3.7.3.1.2 Late binding 

From the technology description, SR-IOV is a technology that improves mainly on throughput and 

situates itself, from a configuration point of view, at the level of the network, hypervisor and host. 

It requires network interface cards (or other peripheral devices such as GPUs) that are SR-IOV 

enabled (due to the HW user context support). 

From a service point of view, SR-IOV interfaces are presented as regular interfaces that can be used 

by a service. 
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Given the above, a service manifest merely needs to specify an affinity of a service towards 

throughput. This will allow the cloud orchestration to select the appropriate networking technology 

to use for a service given the actual (and predicted future) state of the infrastructure it governs. 

Evidently the service manifest should contain a minimum throughput parameter to ensure normal 

service operation. 

3.7.3.2 IVSHMEM inter-VM communication 

3.7.3.2.1 Technology 

With IVSHMEM, VMs can communicate with each other through shared memory. The overall 

architecture is depicted in Figure 30. In brief, on a host, a shared memory region is allocated. This 

memory region is passed into the guest as a PCI device. Through the PCI registers, the guest can 

communicate with the host. The IVSHMEM kernel module, handling the PCI device, provides this 

functionality.  

On the host, an IVSHMEM server coordinates the communication between host and its clients and 

between clients. Using a doorbell mechanism modelled on top of the PCI registers, guests can send 

and receive notifications between one-another.  

 

Figure 30 – High-level architecture diagram of IVSHMEM inter-VM communication 

For a more detailed description of the envisioned shared memory technique, notably, IVSHMEM or 

also called Nahanni, see [IVSH01]. 

3.7.3.2.2 IVSHMEM Late Binding 

IVSHMEM is a technology that improves mainly on throughput and latency in case of communication 

remains “on host”. It requires the presence of a kernel module in the guest OS and a coordinating 

server application on the host OS. The applications need to be designed to work with the shared 

memory communication channel. Furthermore, the collaborating VMs/applications/services need to 

learn the IVSHMEM destination ID of their peer services for the collaboration to work. Shared 

memory technology imposes that collaborating services trust one another. 

Given the above, a service manifest has to indicate that the service is “IVSHMEM” enabled and to 

which PCI device ID the interface should be mapped. Orchestration can then deploy the collaborating 

services onto the same host, setup the coordinating server at host and provide the necessary VM 

configuration parameters for IVSHMEM to work. 

Evidently the service manifest should contain a minimum throughput parameter to ensure normal 

service operation. From security point of view, the manifest should indicate a trust relationship with 
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collaborating services. Note that some of this functionality could be hidden behind a higher-level API, 

shielding the applications from all intricate details of this communication mechanism. 

3.7.3.3 Dctcp 

3.7.3.3.1 Technology 

A lot of internet communication is transferred using TCP. TCP offers the following functionality: 

• connection setup and teardown 

• ports so multiple connections between systems can occur simultaneously 

• flow control via a sliding congestion window  

• reliable, ordered delivery via independent, bidirectional sequence numbers 

TCP's sliding congestion window allows a sender to send a certain amount of data on the wire 

without having yet received an acknowledgment from the receiver. The size of the sliding window is 

optimally equal to the bandwidth delay product (BDP) [WIKI01) and when configured appropriately 

allows to fully utilize the interconnect. 

TCP window size is a possible tuning factor with important benefits in case of increased round trip 

times (RTT) or low  bandwidth links. In data centres however, RRT delays are rather short (in the 

order of milliseconds) and links are high bandwidth, so additional benefit can be gained from 

congestion control. 

For increasing BDP, more unacknowledged data is in transition of being delivered. In case of network 

hiccups/irregularities/transmission errors, the risk of clogging networks increases as more data might 

be lost and/or needs to be retransmitted. Therefore controlling or handling congestion is an 

important factor in overall throughput. And this is the aim of DCTCP. 

In the below paragraphs a few different versions of DCTCP are mentioned.  

• DCTCP  

DCTCP is an enhancement to the TCP congestion control algorithm that uses Explicit Congestion 

Notification (ECN). In case of congestion, DCTCP sources extract multi-bit feedback from the ECN 

marks by estimating the fraction of marked packets. In doing so, DCTCP sources react to the 

extent of congestion, not just the presence of congestion as in TCP.  This allows to work with very 

low buffer occupancies and simultaneously achieve high throughput. A full analysis of DCTCP can 

be found at [ALIZ11].  

• D2TCP 

This is a deadline aware TCP. For further information, see [BALA12].  

• D3TCP 

D3 is a deadline-aware control protocol that is customized for the data centre environment. D3 

uses explicit rate control to apportion bandwidth according to flow deadlines: presented and 

described in [WILS13]. 

• DIATCP 

Deadline and Incast Aware TCP for Cloud Data Centre Networks by Jaehyun Hwang, Joon Yoo, 

and Nakjung Choi, representing recent work of Bell Labs on data centre and TCP [HWAN14].  

3.7.3.3.2 Late Binding 

From the technology description, DCTCP and variants are technological improvements on TCP. 
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1) As with the other technologies, a service manifest should also specify an affinity of the service 

towards throughput and latency. To cover the throughput variability of TCP, a margin could be 

specified. 

2) From a service point of view, it suffices to indicate the use of TCP thereby covering all TCP  

improvement protocols.  

Given the two topics above, this will allow the cloud orchestration to select the appropriate 

networking technology to use for a service given the actual (and predicted future) state of the 

infrastructure it governs. 

Evidently the service manifest should contain a minimum throughput parameter and maximum 

latency to ensure normal service operation. 

3.7.3.4 Docker libchan  

3.7.3.4.1 Technology 

Libchan is an ultra-lightweight networking library which lets network services communicate in the 

same way that goroutines communicate using channels: 

• Simple message passing 

• Synchronization for concurrent programming 

• Nesting: channels can be sent through other channels 

Libchan sessions that remain on the host can benefit from a zero copy go channel to provide efficient 

inter-container communication. 

Remote libchan sessions are regular HTTP2 over TLS sessions, and can be used in combination with 

any standard proxy or authentication middleware. When configured properly, libchan 

communication channels can be safely exposed on the public Internet.  

Libchan is designed so that any message serialization format can be plugged in, e.g.: json, msgpack, 

xml, protobuf, etc. 

3.7.3.4.2 Late Binding 

From the technology description, libchan is a networking library that can be used in case of Go 

programming language designed services. The main benefit of libchan is the injection of functionality 

(HTTP2 and TLS) and from security point of view allow to work cross data centres. 

A service manifest describing such a service should indicate that the service is “libchan” enabled. This 

allows orchestration to deploy “libchan” collaborating services and to select the appropriate 

networking technology to use for a service given the actual (and predicted future) state of the 

infrastructure it governs. Evidently the service manifest should contain a minimum throughput 

parameter to ensure normal service operation. From security point of view, the manifest should 

indicate any security settings for the collaborating services. 

3.7.3.5 RoCE 

3.7.3.5.1 Technology 

RDMA over Converged Ethernet is in fact an hardware accelerator for inter-host communication. For 

a brief introduction and overall architecture, see [LEE10].  

Principally, RoCE uses an specific Network Interface Card that provides for network transport as well 

as an entire optimized OFED network stack (cfr [OFED01] and [OFED02]). 
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Figure 31 – Comparison of OFED stack versus classical IP software stack 

 

OFED provides the following functionality: 

• a technique of channel-oriented RemoteDirectMemoryAccess, 

• send/receive operations,  

• kernel bypasses of the operating system, 

• both a kernel and user-level application programming interface (API),  

• services for parallel message passing (MPI), 

• sockets data exchange (e.g., RDS, SDP). 

3.7.3.5.2 Late Binding 

Given that RoCE is a HW accelerator for protocol stack offloading, a service manifest describing a 

service should indicate that the service is “RoCE” enabled.  

This allows orchestration to deploy “RoCE” collaborating services and to select the appropriate 

networking technology to use for a service given the actual (and predicted future) state of the 

infrastructure it governs. 

Evidently the service manifest should contain a minimum throughput parameter and maximum 

latency parameter to ensure normal service operation. 

3.7.4 Performance measurements 

Some performance related measurements of each of these technologies are discussed in Section 4.5. 

3.7.5 FUSION service manifest and late binding 

The FUSION service manifest specifies a service and its dependencies at design time and at service 

registration time.  

Concerning late binding and its information as described in the service manifest, the manifest serves 

as an input for orchestration and placement so that services can be deployed according to their 

requirements and conforms to their SLAs and overall at zone and domain level  to achieve overall 

optimization. 
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Additionally, the FUSION service evaluators could provide information about a service’s networking 

dependability, affinity and provide information for late binding of collaborating services. 

FUSION service evaluators work at deployment time. FUSION orchestration and placement (domain 

and zone) can use both manifest and evaluator information as input to select the most appropriate 

interconnect technology in the perspective of an overall domain and zone optimization. 

On a general level, a FUSION service manifest should:  

• Specify an affinity of a service towards throughput or latency sensitivity, on service and service 

component level. 

• Contain a minimum throughput parameter and a maximum latency parameter on a service and a 

service component level to ensure normal service operation. 

• In case specific networking requirements are needed (e.g. RoCE, DPDK), specification of the 

specific parameters that are needed for the given technology and that allow orchestration to 

perform an optimal placement. All of the networking technologies that a service or service 

component support should be enumerated. Note that this could be specified also one more 

abstract level, for example in case the service supports some optimized communication library, 

which supports a number of specialized communication channels.  

3.7.6 FUSION service manifest, framework and DCA interaction 

Service manifest contains complete service description with all supported interworking functionality 

as well as an evaluator service. The manifest and supported networking enumerations can be used 

by the FUSION framework (domain manager, zone manager) to combine this design time information 

with runtime information from the evaluator service and eventually constrains the possible 

selectable hosts. 

This part of the manifest can be passed on to the DCA layer as metadata so that the DCA can filter 

the number of available hosts and provide the necessary configuration settings towards the hosts 

upon which the service will be instantiated. 
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4. EVALUATION OF ENABLING TECHNOLOGIES AND ALGORITHMS   

This section describes first evaluation results of specific WP3-related concepts and technologies, 

including feasibility studies, evaluation of specific (e.g. placement) algorithms or specific prototypes 

of specific subcomponents. Whereas all integration-related evaluation work of this year is done in 

WP5 and described in detail in D5.2, this section focuses on the evaluation of specific individual 

components, algorithms or enabling concepts, defined and evaluated outside the scope of the 

integrated prototype. This typically involves specific experimental setups outside the setup for 

deploying and evaluating the integrated prototype. 

4.1 Multi-configuration service instance modelling 

We already discussed the concept and benefits of sharing the available resource slots of service 

component instances across more than one service (configuration). In this section, we quantify some 

of these benefits by representing the session slots and session slot sharing as a simple MMC queuing 

model. In this model, C represents the number of available slots for a particular service. These slots 

can either come from a single instance or from multiple instances. In the latter case, we assume a 

load balancer for mapping the incoming service requests onto the available session slots from the 

different instances. 

In this model, we assume a constant service request rate λ and a constant service processing rate µ. 

Unless stated otherwise, we assume µ to be 4 requests per hour. In other words, one session lasts on 

average 15 minutes. We assume a classical Poisson distribution for the arrival and processing rates. 

Using this MMC model, multi-configuration services can be modelled as depicted in Figure 32. 

 

Figure 32 – Separate versus shared session slots with single and multi-configuration instances 

In this example, there are two services, named S and T, with the same service request rate λ and 

service processing rate µ. In the single-configuration case, they each having 5 resource/session slots 

available. If all 5 slots of a service are occupied, the clients need to wait before they can access that 

service. In the dual-configuration case, the 5 session/resource slots of both services are combined in 

a larger pool of 10 available slots. In this case, both the incoming requests for service S and T will be 

handled by one of those available slots. The aggregate arrival rate for this pool of resource slots is 

2×λ. 

In the first set of results, we assume a constant amount of session slots per service. In the second set 

of results, we will then compare the minimum required session slots for a target maximum waiting 

time or waiting probability. 
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(a) Average waiting time 

 

(b) Waiting probability 

 

Figure 33 – Average waiting time and waiting probability as a function of the average session slot 

utilization for C = 20 (per service) and µ = 4/hour. 

In Figure 33, the average waiting time and waiting probability is shown as a function of the average 

session slot utilization factor ρ. We assume 20 available session slots per service. As can be observed, 

being able to share a larger pool of available session across multiple service configurations results in 

a much higher session slot (i.e., resource) utilization factor for a similar waiting time or waiting 

probability. This follows the intuition that a larger shared buffer can cope better with particular 

outliers, as the probability that multiple outliers coincide is much lower than only a single outlier. As 

an example, in case the waiting probability should remain below 1%, then the session slot utilization 

can increase to 80% when eight configurations can be mapped onto the shared pool of 160 resource 

slots, compared to only about 50% in case each service has its own limited pool of 20 resource slots. 

(a) C=10 

 

(b) C=100 

 

Figure 34 – Average waiting time as a function of the average session slot utilization for C = 10 and 

C = 100 (per service) and µ = 4/hour. 

In Figure 34, the average waiting time is shown when the number of available session slots per 

service is smaller (C=10) or larger (C=100). As can be expected, the relative impact is larger for 

smaller individual pools of available session slots. In case of 10 session slots per service, the average 

waiting time for an average session slot utilization of 50% is already 8 seconds, whereas for eight 

service configurations mapped onto the same resource slots, the average waiting time for a session 

slot utilization of 75% is still below 1 second. As we envision in FUSION that services can be deployed 
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in many small execution zones, each supporting only a limited number of session slots per deployed 

service, this multi-configuration feature can significantly improve the resource utilization factor of 

these already scarce and expensive resources.  

Vice versa, this also means that for a particular target maximum waiting time or probability, fewer 

session slots (i.e., resources) need to be reserved to handle the same incoming load. This is depicted 

in Figure 35. 

(a) Average waiting time 

 

(b) Waiting probability 

 

Figure 35 – Minimal required session slots as a function of the target average waiting time or 

waiting probability for a constant service request rate of λ = 1/minute and µ = 4/hour. 

For a target waiting time of 0.1 seconds, the minimum amount of session/resource slots that need to 

be available can be reduced by up to 33% (i.e., from 29 to 20 per service) when the resource slots 

can be shared across eight service configurations. Note that in FUSION, we target almost zero 

average waiting time, by combining a service resolution plane, session-slot based scaling and a 

lightweight deployment model (i.e., clients should never have to wait). For higher service request 

rates (and a constant service processing time), the relative reduction is lower (due to a higher 

amount of session slots that need to available to handle such load); for lower service request rates, 

the relative reduction in required session slots is even higher.  

Although the main findings are already well-known in the Telecom community, in this section, we 

specifically showed the benefits and necessity from aggregating and overlaying multiple services on 

top of a similar pool of session slots, especially in smaller DCs with limited resources onto which 

FUSION services will be deployed.   

4.2 Docker-based service provisioning 

In this section, we present some initial results regarding the efficiency of Docker for provisioning 

Docker container images onto a Docker host environment. In a distributed environment such as 

FUSION, the images of new FUSION services first need to be downloaded from a (distributed or 

centralized) image repository before they can be deployed and instantiated on a particular system. 

Similarly, within a particular execution environment, it may be necessary to first download the image 

from a file server onto the target host node (e.g., in case not a distributed file system is used). 

We focus mainly on the average time to download the appropriate image and artefacts from a 

remote repository or file server, as this typically represents the largest fraction of the provisioning 

latency in case the image is not locally available. For example, in case of Docker, creating a new 

environment for a container instance (i.e., docker create) only takes about 0.05 seconds on our 
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server
5
, and starting a created container instance (i.e., docker start) typically takes less than 0.2 

seconds on the same server. 

As discussed already in Section 2.6.1, Docker uses a stacked imaging system, where containers 

typically depend on other more general container images, thus creating a stack of image layers on 

top of each other. Multiple (independent) containers can share the same intermediate image layers 

in a tree-like fashion (one container can only have one parent container image). Docker supports 

both private and public registries for storing and fetching these container images. 

For example, for many containers, the base layer (i.e., the lowest image layer) typically represents a 

particular Linux distribution (e.g., ubuntu, debian, fedora, etc.), containing the corresponding basic 

libraries and executables of that Linux distribution (but excluding the Linux kernel). All containers 

depending on the same base layer image effectively will share that image layer. As Docker only needs 

to fetch each image layer once from a remote registry, this means that being able to share the base 

and intermediate layers can greatly reduce the overall provisioning time of a new Docker container 

on a particular host, if one or more of these layers have already been provisioned earlier in the 

context of other (possibly even independent) containers. As such, the application-specific top layers 

should be kept as small as possible. 

In Figure 36, the current Docker image tree is depicted of the various FUSION application and system 

prototype components that have been created so far for the integrated prototype of WP5. The total 

accumulated virtual size of all Docker images (assuming no sharing of image layers) is roughly 4.5 GB, 

and the full virtual size of the EPG (including all layers) is about 630 MB. At 1Gbps, downloading the 

EPG image would take about 5 seconds and fetching all images uncompressed would take over 30 

seconds.  

 

Figure 36 – Docker FUSION prototype containers with their incremental image size 

Given the Docker tree depicted in Figure 36, and assuming the different image layers only need to be 

fetched once, then the total accumulated incremental size of all individual layers drops to only about 

660 MB (compared to 4.5 GB), which is a factor 5 reduction in provisioning time and bandwidth: 

                                                           
5
 Our evaluation server is a HP DL380 G8, containing a dual-socket Xeon E5-2690v2, with 64 GiB RAM, running 

Ubuntu 14.04 and Docker 1.3.1. 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 93 of 136

 

Copyright © FUSION Consortium, 2014 

fetching all layers uncompressed now would take about 7 seconds. Docker however also compresses 

all image layers when storing them in the remote registry, and uncompresses the layers after they 

are fetched at the local host. When inspecting the total size of the Docker registry, the actual size of 

all accumulated image layers of Figure 36 is further reduced by almost a factor of 2x to only about 

370 MB (compared to 660 MB). Fetching all these layers from all applications at 1Gbps would now 

take only 3 seconds.  

For the EPG container, the number of layers (and thus the amount of data) that needs to be fetched 

heavily depends on the presence of other shared layers in a particular execution zone. For example, 

in case only the Python/Flask image layer would available, then about 440 MB of uncompressed 

image layers (or about 250 MB of compressed data) would need to be fetched from the remote 

registry, resulting in a provisioning delay of about 2 seconds. In case the Streamer container is 

already available, then only about 160 MB of uncompressed image layers would have to be fetched 

remotely, and in case the VDesk container is available, only 2 MB of uncompressed data would need 

to be fetched remotely. 

Comparing this with classical VM images, where each VM is stored and fetched individually, the 

overall provisioning delay and total required bandwidth can be significantly reduced. Although 

overlay-based mechanisms have been proposed for VMs, starting with a common base VM image 

and only providing the delta, Docker provides a much more elegant and fine-grained solution for 

efficiently sharing common files across possibly unrelated containers. Also, as Docker containers do 

not have to contain a full virtual environment, including OS, drivers, etc., the average size of a Docker 

container is also typically much smaller than a corresponding VM image. 

Apart from the back-of-the-envelope calculations above regarding provisioning latencies and 

bandwidth, we also performed a number of simple performance experiments of the Docker registry 

component as well as the docker pull command for explicitly fetching/provisioning a Docker 

container (and all its layers) on a local host. Please keep in mind that Docker automatically detects 

which layers are not locally available yet and need to be fetched from a designated local or remote 

registry. 

 

Figure 37 – Docker provisioning time in function of container image size 

These results are depicted in Figure 37, where we show the time for running docker pull from a local 

and remote registry, compared to ideal 1Gbps. For the smallest image sizes, there is some additional 

overhead for simply checking the registry, setting up the connection and setting up the necessary 

local environment. For larger image sizes, the provisioning time approaches the link capacity. 

4.3 Potential of a heterogeneous cloud 

This section describes some fundamental experimental results regarding efficiently deploying real-

time demanding media applications in a heterogeneous virtualized environment. Through a series of 

specific experiments, we illustrate the importance of a heterogeneous (SW/HW) cloud environment 
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for such demanding time-sensitive applications, where the platform (i) adapts itself based on the 

application requirements and infrastructure capabilities, and (ii) provides additional hardware 

infrastructure beyond the classic general purpose server blades for higher efficiency (e.g., micro-

servers, accelerators, etc.)   

4.3.1 Experimental setup 

For the experiments described below, we used a SuperMicro server blade, containing a dual AMD 

Opteron 6174 with at least 64 GiB of RAM installed. For the hardware acceleration experiments, we 

used two custom scalable video encoder PCIe boards. The machine has 24 cores and 4 NUMA nodes 

with a high-speed HyperTransport interconnect in between the different processors. A diagram of 

the hardware configuration is shown in Figure 38. 

 

Figure 38 – Diagram of the hardware configuration 

We ran the software experiments on an Ubuntu 64-bit distribution, using a wide range of versions of 

the Linux kernel to monitor the evolution of Linux and KVM, a Linux-based open-source hypervisor, 

w.r.t. performance and scalability. Unless otherwise stated, the results shown are based on the 3.2.1 

baseline kernel. For the hardware accelerator experiments, we used a CentOS 6.3 running a 3.7.1 

Linux kernel. To measure the impact of virtualization and isolation, we evaluated the efficiency of 

KVM-based virtualization as well as light-weight container-based isolation with a bare metal 

approach. For the latter, we used an in-house developed implementation based on the vanilla 

cgroups, namespaces and chroot capabilities in Linux, but including a custom life-cycle and package 

management layer. To capture the low-level performance statistics, we use our Perfex-MT 

performance counters monitoring tool [VDPU11]. 

The test applications consist of a number of common real-time media transformations, ranging from 

a simple pixel copying microbenchmark to more advanced image processing routines as well as video 

transcoding microbenchmarks, to measure the impact across a range of media transformations. 

Unless otherwise stated, the results shown are for a media format conversion microbenchmark. 

4.3.2 Evaluation results 

In this section, we describe a series of experiments, demonstrating the potential impact of a 

heterogeneous software and hardware cloud platform on performance and QoS. 

4.3.2.1 Impact of NUMA 

For scalability reasons, SMP architectures typically use non-uniform memory access (NUMA) memory 

architectures[LAME06], where memory access time depends on the memory location relative to the 

processor. As a result, NUMA architectures partition the memory system in multiple memory nodes, 
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each with their own access time, capacity and maximum memory bandwidth. In case the system has 

four NUMA nodes and all applications running on the system all happen to access memory from just 

one of these NUMA nodes, only a fraction of the available memory capacity and bandwidth is used, 

potentially resulting in large performance losses. The impact of NUMA has already been studied 

intensively, focusing on topics like placement of parallel applications across NUMA systems 

[BREC93], load balancing and scheduling strategies [CORR05][RAO13], memory management of VMs 

[RAO10], on-demand memory migration [MISH13], and other NUMA-related performance 

optimizations [MCCU10][TANG13].  

Figure 39 shows the impact of running N instances of the media format conversion benchmark under 

a number of specific NUMA configurations. In this test, we pin each application process and their 

corresponding memory on a specific NUMA node. The application processes are uniformly 

distributed across all NUMA nodes (so each processor has the same workload); their corresponding 

memory is pinned on a particular NUMA node, depending on the test case. The vertical axis shows 

the average execution delay for performing a single application iteration. As long as the system is not 

saturated, the average latency, even when running dozens of instances in parallel, remains in the few 

milliseconds range. However, when the system reaches its saturation point (in this case caused by 

saturated memory bandwidth), then the average execution latency increases dramatically, crippling 

the entire system and all its applications.  

 

Figure 39 – Impact of local and remote NUMA-placement on overall scalability 

Obviously, when the memory is pinned on the same NUMA node as the application process (i.e., 

local), then overall throughput is maximized. When application process and memory are on different 

nodes, overall throughput decreases by a factor of 2 or 4, depending on the distance between 

execution and memory node. A distance of 1 means accessing memory from another NUMA node on 

the same socket; a distance of 2 or 3 indicates accessing memory from a NUMA node on another 

CPU socket (straight or cross, respectively). In case of more complex NUMA configurations 

[ALMA12], or different interconnects, the impact is likely to increase. Obviously, when all 

applications access memory from fewer NUMA nodes, the aggregated available memory bandwidth 

is reduced proportionally, with comparable impact on scalability and throughput. In cloud 

environments where applications come and go, and are potentially moved across NUMA nodes as to 

rebalance CPU load, this scenario is very likely to occur, as illustrated several times in subsequent 

graphs. 

4.3.2.2 Impact of virtualization 

In a second series of experiments, we evaluated the impact of different virtualization strategies. A 

short description of each virtualization strategy is provided in Table 8.  
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Table 8 – Virtualization strategies used in experiments  

bare Bare metal (no virtualization or isolation). 

nooks Light-weight virtualization (1 container per application). 

kvm One KVM-based VM guest per application (1 vcpu). 

kvmbare 
One KVM-based VM guest for all applications (24 vcpus); 

All applications run directly in the same VM. 

kvmnooks 
One KVM-based VM guest for all applications (24 vcpus); 

Light-weight virtualization inside the VM (1 container per appl). 

*.numa Optimal NUMA-awareness manually enabled. 

 

The impact of different types of virtualization combined with manual NUMA awareness on the 

overall throughput is depicted in Figure 40. The left graph shows out-of-the-box results, leaving 

NUMA node selection of the application process and memory up to the operating system. The right 

graph shows the results when manually pinning each application and its memory on a particular 

NUMA node in an optimal manner.  

 Out-of-the-box throughput 

 

(b) Optimized throughput 

 

Figure 40 – Impact of virtualization and NUMA-awareness on scalability. The left graph shows out-

of-the-box performance; the right graph shows the NUMA-aware optimized throughput results. 

A number of observations can be made from these results. First, there is a clear difference in 

behaviour and scalability between the out-of-the-box and the NUMA-aware performance. Out-of-

the-box performance is significantly worse compared to the bare metal NUMA-aware results. 

Second, when enabling the manual NUMA-aware placement, there is little or no difference in 

scalability between the tested virtualization options: even when running over 200 KVM-based VMs 

on the same machine, each containing an actively running media application, the average aggregated 

throughput remains on par with the bare metal results, albeit with higher variance (see further). 

Third, for the out-of-the-box results, the situation is very different. Running each application in its 

own VM (i.e., ‘kvm’) clearly has a more significant impact on scalability than the other virtualization 

strategies, with up to 400% reduction in scalability compared to an optimized KVM-based 

deployment on the same system. On the other hand, the container-based approach (‘nooks’) seem 

to have little or no impact on the overall behaviour and throughput of the system compared to bare 

metal for this test.  

Next, in Figure 41, we show the amount of jitter within these applications under the same 

conditions. We express the amount of jitter by measuring the Coefficient of Variation (CoV) of the 

execution latencies of all application iterations, which is the ratio of the standard deviation (σ) to the 

mean (µ). 
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(a) Out-of-the-box jitter 

 

(b) Optimized jitter 

 

Figure 41 – Impact of virtualization and NUMA-awareness on the amount of variation in 

application iteration execution delays. The left graph shows the out-of-the-box results, whereas 

the right graph shows the NUMA-aware optimized jitter results. 

 

The lower the CoV, the less jitter there is between the execution delays of subsequent iterations of 

the application. Lower jitter results in higher predictability and stability. As can be observed, the 

graphs show similar results as before, namely that NUMA-awareness clearly has a noticeably positive 

impact on the overall predictability and stability of the system. The amount of variation of the KVM-

based strategies however remain higher than the container-based and bare metal approaches, 

whereas the container-based virtualization appears to result even in slightly lower jitter than bare 

metal. In the out-of-the-box scenarios, the KVM-based results show worse jitter, whereas the 

container-based approach resembles the bare-metal results. Where  multimedia is concerned, 

increasing jitter directly impacts overall scalability. Two other key application-level performance 

indicators for real-time media are the amount of missed deadlines and the sustained frame rate. The 

impact of virtualization and NUMA awareness on the former is depicted in Figure 42. The same 

trends can be observed, whereby, in case of KVM, there are even some deadline misses at very low 

system load.  

(a) Out-of-the-box deadline misses 

 

(b) Optimized deadline misses 

 

Figure 42 – Impact of virtualization and NUMA-awareness on the amount of missed application 

deadlines. The left graph shows the out-of-the-box results, whereas the right graph shows  

the NUMA-aware optimized results. 

A fundamental question that arises from these experiments is how to detect or anticipate when the 

overall saturation point is reached on a particular system for a particular set of workloads.  
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Oversubscription obviously has a detrimental impact on all real-time applications on the same 

system that are also impacted by the same bottleneck.  

4.3.2.3 Impact of other hardware features 

There are several other hardware features of general purpose processors and systems that may have 

an impact on the overall throughput and predictability of a system. One of such features are huge 

memory pages. By default, memory is divided into pages of typically 4 KiB to enable efficient 

mapping of virtual memory addresses onto physical addresses. To avoid look-up of the physical 

address during each memory access, processors typically store the most recent translations in a TLB 

cache. Obviously, an application frequently accessing memory locations that are scattered across 

many pages will trigger many TLB misses, resulting in slower memory accesses and reduced 

performance. However, modern processors also support huge pages (e.g., 2 MiB) that can reduce the 

TLB miss penalty at the expense of coarse-grained memory paging.  

The above experiments for our microbenchmarks with huge pages enabled did not seem to have a 

huge impact on throughput since most of these transformations have a rather straight-forward 

memory access pattern that does not involve scattering. We did see a reduction of up to a factor 5 

lower average jitter for the most memory-intensive benchmarks. Other media transformations 

extensively using linked lists or for example randomly sample images may benefit from using huge 

memory pages.  

Another important hardware feature is the dynamic frequency and voltage scaling in modern 

processors. To save power and energy (as well as cooling costs), it is beneficial to keep the CPU 

frequency and voltage levels as low as possible. Throttling up and down could significant impact 

overall throughput and predictability of applications. In our experiments, the overall throughput is 

not impacted, but jitter doubles when enabling on-demand frequency scaling by the operating 

system, and even more so in case of virtualization. Because CPU frequency is reduced up to a factor 

of 3 for an unsaturated system, the average processing latency is increased by the same factor. 

Finally, frequent changes in different clock frequencies also results in extra jitter and changing 

processing latencies. 

4.3.2.4 Impact of software implementation 

Obviously, a particular algorithm implementation can have a huge impact on the overall scalability. 

Since cloud abstracts the underlying hardware platform, it is hard to find or tune an algorithm for a 

particular cloud environment. Even small differences in the behaviour of different processors can 

significantly impact its actual performance when deployed on a particular hardware platform: 

different cache sizes, supported SIMD instruction sets, etc.  

For example, an innocently looking divide instruction in an inner loop in one of our microbenchmarks 

made the application run twice as slow on the Opteron compared to the Xeon. Getting rid of this 

instruction also removed the performance difference. This example illustrates the difficulty to profile 

and monitor sensitive demanding applications for cloud environments, especially when lacking 

insight into the specifics of the environment. A heterogeneous cloud platform, directly or indirectly 

taking into account these issues can significantly improve the performance, efficiency and 

predictability, which is crucial for demanding time-sensitive applications such as real-time media 

applications. 

4.3.2.5 Impact of hardware accelerators 

In this section, we discuss the performance and cost benefits of deploying specialized hardware in a 

virtualized environment. We use two custom scalable video encoder PCIe boards, as shown in Figure 

38 earlier. Each PCIe board contains four chips, allowing to encode up to 10 HD video streams in real-

time per chip. Consequently, a single server blade with two boards can ideally encode up to 80 HD 
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streams in parallel, while freeing the CPU cores for doing other work, resulting in a dense high-

performance energy-efficient system.  

At present, the encoder boards do not support SR-IOV yet, so the amount of VMs that we will use 

will be limited to 4 in our tests (i.e., one per NUMA node), which are assigned to each VM via the 

PCIe pass-through capabilities in KVM. According to our calculations, adding this hardware 

accelerator (as well as other hardware accelerators like GPUs and others) can easily result in 

increases in the range of 5x up to 10x times in efficiency and up to 4x-8x times lower CAPEX costs per 

user, as well as significantly reduce the OPEX costs due to lower power consumption, reducing rack 

space, etc. 

In this test, we evaluate the impact of NUMA-awareness and KVM-based virtualization on the overall 

scalability of using the hardware accelerators. Note that accessing these hardware accelerators is 

bandwidth demanding, as raw video frames need to be sent from system memory to the encoders 

over the PCIe busses.  

(a) Overall throughput 

 

(b) Overall jitter 

 

Figure 43 – Impact of virtualization and NUMA-awareness on the overall efficiency of exploiting 

hardware-accelerator video encoder boards. The left graph shows the average aggregated 

response time, whereas the right graph shows the overall jitter for encoding video frames. 

 

As can be observed in Figure 43, both NUMA-awareness and virtualization impact the overall 

scalability. Observing the bare metal results, a modest impact of ~20% between out-of-the-box and 

NUMA-optimized performance is noted. For the NUMA-optimized results, we not only map particular 

application processes and their memory onto a particular NUMA node, we also use the hardware 

board that is directly connected to the corresponding CPU socket as well as tune the IRQ affinity to 

reduce overall jitter. The impact of the virtualization layer on the other hand is much higher, with up 

to 300% reduction in efficiency, as in the out-of-the-box scenario only about one third of the 

available hardware encoders can be used in real-time, even with moderate to high amounts of jitter.  

When manually introducing NUMA-awareness, all available hardware encoders can be used in 

parallel in real-time, though there is still a noticeable impact in average response time as well as 

jitter. Analysis indicates this is at least partially caused by interrupt routing via the hypervisor to the 

VM [GORD12]. In summary, although the overall benefits of exploiting heterogeneous hardware in 

cloud environments can be huge, carelessly doing so can significantly reduce these benefits. 

Additional effort needs to be invested in finding techniques for optimizing the usage of these 

accelerators in cloud environments.   
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4.3.2.6 Impact of resource isolation and real-time guarantees 

In this section, we first describe a methodology for mixing real-time and non-real-time applications 

for increasing the amount of performance isolation of real-time applications deployed onto the same 

resources while maintaining a high resource utilization ratio. Then, we present an initial set of results 

based on a number of experiments we have conducted. We focus mainly on the impact of various 

Linux primitives for providing better CPU performance isolation, and discuss some of the 

complexities regarding providing better isolation of memory and disk I/O performance in a Linux 

environment. All presented results have been measured on the same experimental setup as 

described in Section 4.3.1. 

4.3.2.6.1 Methodology for mixing real-time and non-real-time applications  

For some services, including many of the target applications services that FUSION should support, a 

best-effort approach w.r.t. resource utilization, as is typically provided in public clouds, is not 

enough. Some services fundamentally have particular resource requirements (either with respect to 

bandwidth, latency or timing constraints, or both). 

The goal of our proposed methodology in this section is to investigate and provide stronger 

performance isolation mechanisms for applications that need them, but on the other hand also not 

to waste too many unused resources. In other words, we ideally want a flexible performance 

isolation layer, trading off perfect isolation with resource utilization efficiency. This is schematically 

represented in Figure 44. 

 

Figure 44 – Flexible performance isolation mechanisms to increase overall resource efficiency 

The yellow form symbolizes the actual resource utilization pattern of a RT application, and the blue 

box represents the isolation environment. For example, for NFV, operators now typically deploy only 

a single VNF or VM per cloud node to avoid interference or performance degradation of deploying 

multiple VNFs or VMs on the same node. Although this provides better isolation and predictability, 

this can be very inefficient.  

As such, our goal is to find reduce the effective amount of isolation to what is represented as green 

in the Figure, and leverage the remaining blue area for running other (less sensitive) applications in 

the background. This is depicted more concretely in Figure 45. 

 

Figure 45 – Oversubscribing non-used RT bandwidth with non-RT applications for higher utilization 

First, for each RT applications, we provide some soft bandwidth guarantees, for which we do not 

oversubscribe that reserved bandwidth for other RT applications. As a consequence, we also provide 

hard limits on how much bandwidth each RT application can use (i.e., to prevent oversubscription 

amongst RT applications).  
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Second, for many RT applications, the effective amount of resource bandwidth (e.g., CPU cycles, 

memory or network throughput, IOPS, etc.) typically will vary over time (e.g., based on the actual 

service load or active sessions. Rather than wasting those unused cycles, the main idea is to 

oversubscribe this available bandwidth with non-RT applications, but only when these non-RT 

applications can be easily and quickly preempted by the RT application, allowing the RT application 

to claim its requested amount of resources at any moment in time.   

An overall system view of this approach is depicted in Figure 46. The available resource bandwidth is 

partitioned amongst the various RT applications, each with their own guaranteed amount resource 

bandwidth (with no oversubscription in between these RT applications); next to this, there may also 

still be some free bandwidth available for the non-RT best effort (BE) applications. As each of these 

RT applications will typically consume on average only some fraction of its resources, a particular 

amount of bandwidth remains per RT service to be used by the BE applications. In terms of 

oversubscription, the effective RT bandwidth is never oversubscribed (i.e., 1), whereas the available 

preemptible bandwidth and free bandwidth may be oversubscribed with different oversubscription 

factors (i.e., ω1 and ω2, to take into account that the preemptible bandwidth has a lower QoS score 

than the free bandwidth. 

 

Figure 46 – System view of mixing RT and non-RT applications on a particular set of resources. 

In the next few sections, we will evaluate the feasibility and effectiveness of a standard Linux kernel 

environment for implementing this methodology.  

4.3.2.6.2 CCDF graphs 

In the following sections, we will present the results using CCDF graphs, of which an example is 

shown in Figure 47. The graph shows the complementary cumulative distribution function of a 

particular application metric (in this case application latency). In other words, it represents the  

probability of particular outliers. In this case, it shows the probability that the latency is at least X ms. 

As such, it shows the tail latency (as a log-log curve) of an application deployed in a particular 

environment.  In our experiments, we used a real-time media encoding application running at 25 FPS, 

meaning that the application latency for producing a new frame should remain (well) below 40 ms 

(see the dashed vertical line in the Figure); anything beyond that line result in missed deadlines and 

reduced QoE. 
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Figure 47 – Example CCDF plot of a real-time media encoding application 

In this specific example, it can be observed that the tail latency of the bare metal NUMA optimized 

environment never goes beyond the 40 ms latency border, whereas the virtualized non-optimized 

deployment scenarios result in higher tail latencies, going beyond 100 ms once every 1000 frames 

(i.e., once every 40 seconds). In case of KVM-based deployment, the tail latency is higher than 200 

ms once every 4000 frames (i.e., once every 3 minutes).  

4.3.2.6.3 CPU performance isolation  

In this series of experiments, we evaluate the feasibility of a vanilla Linux kernel environment for 

providing better-than-best-effort CPU performance isolation in a bare metal and virtualized 

environment. We do not rely on custom RT kernel patches or RT micro-kernels for achieving this CPU 

performance isolation.  

Linux supports a number of core features for enabling better performance isolation between 

applications, including the following list:  

• Linux scheduling priority classes 

The default scheduler is the Completely Fair Scheduler (CFS), which is a pre-emptive priority-

based scheduler. The main idea of this scheduler type is that applications scheduled in the same 

priority class each get a fair share of the CPU resources (and thus can be pre-empted after some 

time to allow other applications to run). Applications in a higher (RT) priority class get priority 

over applications in a lower priority class, meaning that applications in the latter class will be pre-

empted when an application of a higher priority is ready to run. Linux supports 100 priority 

levels, and within each priority level it supports 40 nice levels to give more or less relative CPU 

time (i.e., weight) to particular applications in a particular priority class. Default, user 

applications are typically started in the lowest (user) priority class. We call this the best-effort 

deployment scenario later. 

Note that recent Linux kernel versions (3.14+) now also support a constrained deadline scheduler 

based on periodicity instead of priorities. The experiments shown here date from before this 

scheduler was introduced in the vanilla kernel, and it would be interesting to run the same 

experiments again, using the deadline scheduler instead of the CFS scheduler. 

• CPU cgroups 

One of the other enabling features are the cgroups, with allow for more fine-grained resource 

control, and is typically also used as part of lightweight containers for more fine-grained 

isolation, but can also be used separately. One of the cgroup resources that can be controlled are 

the CPU scheduling parameters. For non-RT applications, the cgroups.cpu_cfs_period_us and 
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cgroups.cpu_cfs_quota_us tuning parameters can be used for setting fine-grained CPU quotas for 

(groups of) applications.  

For RT applications on the other hand, the cgroups.rt_period_us and cgroups.rt_runtime_us 

parameters can be used. Basically, these two parameters allow to specify how much CPU 

runtime a particular (set of) RT applications can use within each specified period of time (e.g., 

every second, or every 40 ms). The latter set of parameters allow to isolate the different RT 

applications, ensuring that no RT application can exceed its available CPU budget.  

• CPU sets 

With this feature, one can constrain the CPU cores onto which particular applications, threads, 

containers or vCPUs can be scheduled on the physical host. This mechanism allows for some 

strict partitioning of applications across overlapping or non-overlapping CPU sockets and CPU 

cores. 

For this test, we use a real-time video encoding application based on the X264 software encoding 

libraries. One application in this test encodes a 720p video stream at 25 FPS using the zero-latency 

settings. We deploy a number (N) of these applications on the experimental environment discussed 

in Section 4.3.1 and observe its encoding tail latency behaviour in a number of CCDF plots. We show 

the tail latencies of bare metal, Docker-based, KVM-based and NUMA-optimized deployment 

scenarios, and compare the CCDF graphs of best-effort-only deployments versus RT deployments.  

For the RT deployments (either bare metal, Docker or KVM), we combined the RT scheduling priority 

settings with the maximum RT CPU utilization settings for giving priority to the RT applications while 

constraining how much CPU each RT application can use. Combined, they allow for a better 

performance isolation in between the RT applications while also allowing non-RT applications to 

consume the unused cycles by the RT applications. This is depicted in Figure 48. 

Graph (a) in Figure 48 shows the baseline results of not enabling any RT priorities or CPU isolation, 

but simply running 48 instances of the real-time encoding application on the same physical host. The 

graph is in fact the same as we used earlier for explaining a CCDF plot. In graph (b), we deploy the 

same number of applications, but we deploy one of these applications as a RT application, and the 

CCDF plot represents the tail latency behavior of that RT application. It can be clearly observed that 

the enabled Linux mechanisms allow for a much better average and tail latency behavior across the 

various virtualization strategies, thus enabling a better performance isolation with respect of the 

other applications.  

In graph (c), we go even one step further. Although the system was already saturated in graph (b), 

one can clearly see that saturating the system beyond reasonable amounts (i.e., deploying 120 

instances) barely has any impact on the average and tail latency behavior of that single RT 

application, showing that the underlying mechanisms are not sensitive to the amount of load in the 

system. In graph (d), we then increase the number of RT applications to 24 under the same 

extremely high load. The CCDF plots shown here represents the accumulated latency results across 

all RT applications. Apart from a small bump in case of KVM (which we did not investigate further), 

the tail latency of these RT applications remains steady, even when the system is under heavy load, 

coming from other CPU-intensive applications.  
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(a) Best-effort only, N=48 

 

(b) #RT=1, N=48 

 

(c) #RT=1, N=120 

 

(d) #RT=24, N=120 

 

Figure 48 – CCDF latency plots of various deployment scenarios. Graph (a) shows the CCDF of 48 

instances of a real-time video encoding application are deployed in a best-effort manner. In graphs 

(b)-(d), the CCDF plots the RT applications are shown, collocated with non-RT applications. 

4.3.2.6.4 Memory throughput isolation 

The previous section demonstrated the potential of existing Linux primitives for enabling a better 

performance isolation for CPU-intensive applications. In Figure 49, we show the tail latency of a 

memory-bound (CPU-intensive) application, namely a real-time media conversion application. 
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(a) N=1 

 

(b) #RT=72, N=240 

 

Figure 49 – CCDF latency plots a memory-bound RT media conversion application. The left graph 

shows the tail latency of a single application, whereas the right graphs shows the tail latency of all 

72 RT applications, out of a total of 240 active media conversion applications. 

As can be observed, although the tail latency of the RT applications in the right graph is still far under 

the 40 ms border (even when the system is fully saturated with 240 actively running applications), 

the average latency is a factor 3x worse compared to only running a single media conversion 

application. This is caused by the fact that all 240 applications contend for the same system memory  

bandwidth. So, although the RT applications do have priority over the non-RT applications, the 

memory controller is not aware of this difference in priority and simply gives each active application 

a fair share, effectively slowing down all applications, including the RT applications. This means that 

this reduced efficiency needs to be taken into account when assessing the amount of RT CPU cycles 

each RT application should minimally have. Vice versa, specific memory throughput isolation 

mechanisms could allow for better utilization of memory bandwidth (see further). 

An even worse scenario is shown in Figure 50. There we run the RT encoding application of the 

previous section. Although this is a CPU-bound application, it does require a minimum amount of 

memory bandwidth to encode the frames in real-time. In the upper graph, the baseline behavior of 

running a single RT encoding application is depicted. Once every second, a new I-frame is created in 

this example, and the average encoding latency is about 20 ms. 

However, when we deploy a very specific memory stressing application on the same machine, 

generating a huge burst of memory traffic once every 2 seconds for about half a second, the RT 

encoding application is clearly impacted, overshooting its 40ms deadlines during the memory bursts 

of the other application. Note that in the setup, the two applications are running on different cores, 

but share the same cache and memory subsystem. This example clearly shows that CPU isolation is 

not enough and additional preventing and correcting measures need to be taken, including better 

placement and selection of applications to be collocated on the same physical host, monitoring 

probes to detect such cases, etc. 
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Figure 50 – Impact of an extreme periodic memory-intensive background stress application on the 

RT X264 encoding application. The upper graph shows the baseline behaviour of running only the 

encoding applications without the stresser.  

However, with respect to memory throughput isolation, there currently are not many mechanisms 

available. Two coarser-grain mechanisms are to deploy particular applications on different memory 

subsystems. For example, Linux allows to restrict the memory NUMA nodes that applications can 

use, which can be done in a number of ways, including via the cgroups resource control or numactl. 

We are currently investigating other ways for providing more fine-grained memory throughput 

isolation. 

4.3.2.6.5 Disk I/O throughput isolation 

Apart from CPU and memory throughput isolation, we also investigated the capabilities of Linux for 

isolating disk or block I/O. Linux supports a number of block IO schedulers (typically either the CFQ or 

deadline scheduler), each having a number of tuning parameters for tweaking the priority and 

relative weight. For example, the CFQ IO scheduler has three main priority classes, each supporting 8 

QoS priority levels: the RT priority class, the default best-effort priority class and the idle class, when 

the disk or block device can only be accessed when the device was idle for some grace period. 

Apart from these IO schedulers, as well as a coarse-grained partitioning of applications across non-

overlapping block I/O devices, the cgroups.blkio resource control settings also allow for fine-grained 

monitoring and throttling of the overall read and write throughput of an application to each 

individual block device, both in terms of kbps as well as IOPS, at the minimum granularity of one 

second. Note that these settings currently do not directly work for buffered writes, but can be 

tweaked by also setting an overall memory capacity for each application (or group of applications). 

As different types of block devices have different physical runtime characteristics (e.g., the spinning 

disks of regular HDDs compared to the flash-based SSD disks or compared to a networked storage 

system), each block device should be tweaked separately for proper operation. Similarly, from a 

performance isolation perspective, the effective isolation behaviour and optimization strategies will 

vary w.r.t. the device. The results presented here are for a regular local HDD disk. 

For the initial disk performance isolation analysis, we leveraged the open-source fio benchmarking 

tool [FIO14], which is a flexible benchmarking tool to measure the performance of a particular I/O 

device. It allows choosing different access patterns (e.g., sequential/random read/writes), block 

sizes, buffering, synchronous versus asynchronous I/O handling, I/O depths, etc., and has many 

configurations knobs for evaluating a particular pattern.  
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In this Deliverable, we only show a few example graphs, depicting the overall impact of RT I/O 

scheduling for a regular HDD disk. Different access patterns and devices however can result in 

different behaviour. As such, in a heterogeneous environment, this should be measured separately in 

order to have a clear understanding what the impact of a particular optimization in the respective 

environment. 

(a) #RT=0 (b) #RT=1 (c) #RT=3 

Figure 51 – Impact of RT I/O scheduling class on tail latency when having N applications doing 

sequential writes to the same physical HDD.  

In Figure 51, the impact of enabling the RT I/O scheduling class is depicted on the average and tail 

latency behaviour of the best-effort and RT applications. Graph (a) depicts the overall tail latency in 

case there are N best-effort applications (and no RT applications). As can be observed, as N 

increases, the tail latency also increases accordingly. In graphs (b) and (c) the tail latencies are 

depicted of the RT application(s) as they are collocated with non-RT applications that also perform 

the same I/O operations (though at non-RT priority). As can be observed, the upper part of the tail 

(i.e., the average latency and jitter) is clearly improved, with minimal impact of having one or more 

non-RT applications accessing the same physical disk. However, the bottom part of the tail latency is 

still as bad as having no I/O priority classes. This means that, although there is no complete 

performance isolation, the average behaviour is much better. This is also shown in Figure 52, where 

the average I/O bandwidth is depicted for a varying number of RT applications. Whereas the 

available disk I/O bandwidth falls off linearly with the number of parallel applications in case there 

are no RT applications, the available I/O bandwidth for the RT applications remains much higher, 

though not perfect, especially for higher throughputs that reach or surpass the maximum disk I/O 

bandwidth. 

(a) 10 MB/s per application 

 

(b) 30 MB/s per application 

 

Figure 52 – Impact of RT I/O scheduling class and number of parallel I/O intensive applications on 

the average effective I/O bandwidth for a particular target I/O bandwidth.  
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4.3.3 Demonstrator 

Next to the numerous experiments we performed, we also developed an initial demonstrator, to 

showcase these results in a live demonstrator setup and present them both internally and externally.  

Specifically, we presented our demonstrator on heterogeneous clouds for demanding (FUSION/NFV) 

applications during the FutureX days in Bell Labs on October 15 and 16, both to people from various 

divisions within Alcatel-Lucent Antwerp, including the Bell Labs senior leadership team (SLT) and CEO 

who were visiting Antwerp at the time, as well as to external people, including operators, customers, 

universities as well as funding agencies. Overall, the demonstrator and our work in general was very 

well perceived as being very innovative and extremely relevant.   

The demonstrator highlights a small subset of the various experiments related to heterogeneous 

cloud that we are currently undertaking. For this, we developed an HTML-based frontend to visualize 

the various metrics and to be able to dynamically interact with the setup, for example to change the 

number of applications, the virtualization technology, deployment configuration settings, etc. We 

also added a PHP backend to collect all live logging data and to interact with the actual cloud nodes 

running the applications. 

A snapshot of the demonstrator is depicted in Figure 53. In our setup, we basically have three 

physical cloud nodes running in our lab. The first two cloud nodes consist of standard rack servers 

that are typically used in data centres. The last cloud node is an example of a micro-server, where we 

used an energy-efficient Atom server based CPU instead of the classic Xeon or Opteron CPUs. Being 

optimized for energy-efficiency, these micro-servers can run fewer workloads per core, but with 

typically much higher energy efficiency. Consequently, depending on the workload characteristics, it 

may be beneficial to leverage these Atom servers.  Secondly, we also used lightweight containers for 

deploying the workload instead of KVM-based classical virtualization used in the two left-most cloud 

nodes.  The key difference between the normal cloud node and the software-optimized cloud node is 

that in the latter, we optimized the way these VMs are being deployed and configured on the server, 

taking into account the application characteristics and the infrastructure capabilities, rather than 

leaving everything up to the underlying host and hypervisor. 

In this particular demonstrator scenario shown in Figure 53, we show a memory-bound real-time 

video conversion benchmark, and we evaluate a number of key metrics, such as performance, 

predictability and efficiency metrics. As can be seen, by optimizing the way this application is being 

deployed on the same hardware, the performance can be improved by almost a factor of 2 on 

average, and up to a factor of 3 or 4 in extreme cases for this setup (not shown here), while still 

having a stable system instead of a completely saturated environment.  

Comparing the software optimized and the hardware optimized cloud nodes, one can see that one 

needs more of these micro-server CPUs to be able to run the same workload. However, these micro-

servers are much cheaper and can be packed much more densely in a rack, which (depending on the 

workload characteristics) may result (CAPEX-wise) in a cheaper and more dense solution.  

Even more importantly is the energy efficiency with which these servers typically operate, which 

directly translates to overall energy consumption and cost (indeed, more than one third of all OPEX 

costs are related to energy and cooling [RAS11]), which subsequently may result in significant overall 

TCO reductions. As can be seen for this memory-intensive application, the compute energy efficiency 

(i.e., FPS per Watt) can be improved by a factor of 3 compared to the software optimized cloud node 

and a factor of 6 compared to the standard cloud node. 

Note that this demonstrator currently only highlights some aspects and complexities related to 

optimally deploying demanding applications and how a heterogeneous SW/HW environment can 

result in drastic improvements with respect to QoS and TCO for a specific use case and environment. 

Current work involves automating this process so that any demanding workload can be optimally 

deployed on an unknown heterogeneous cloud infrastructure. 
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Figure 53 – Snapshot of the Bell Labs demonstrator GUI 
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4.4 Service placement 

4.4.1 Experimental setup 

The simulations use real data to infer the geographic location of users of a Massive Open Online 

Course discussion site. The model has several components. The overall aim is to create a simulation 

that includes the following elements: 

• A realistic distribution of users across the surface of the earth. 

• A realistic distribution of data centres on the world. 

• An approximation of service deployment cost which is based on the Amazon EC2 cost. 

In this modelling the network itself is abstracted away and replaced by assumptions drawn from 

measurement studies about the delays between latitude/longitude pairs. In general, the dataset 

includes 2508 data centres distributed in 656 cities on over the world. To map them into the FUSION 

architecture, we call each city to be an execution zone. We manually set the number of total 

available session slots so that they are enough to serve all user demands. The latency between users 

and execution zones are collected based on the Haversine distance, the shortest distance between 

two points around the planet’s surface. We define the three latency thresholds Rmin = 20 ms, Rmed = 

50 ms and Rmax = 150 ms. The cost of service deployment at each execution zone is set proportionally 

to the cost of VM in Amazon EC2. All of these input dataset can be collected from 

https://github.com/richardclegg/multiuservideostream. 

4.4.2 Preliminary evaluation results 

4.4.2.1 Trade-off between the total utility and the deployment cost 

 

Figure 54 Total utility vs. deployment cost 

The utility (x-axis) is computed in percentage in which 100% means all users can get their best QoE 

(latency is less than Rmin). As shown in Figure 54, the best utility we can achieve is 95%, which means 

that approximately 95% of the users can have latency which is less or equal to Rmin = 20 ms. From the 

Figure 54, with the budget (cost) of 8650 (units), we can get the maximum utility. On the other hand, 

with a limited budget of 6650 (units), 73% of users can get their best QoE. Using this graph, the 

service provider can see the trade-off between the user utility and the cost and then they can choose 

the best operational point. 
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4.4.2.2 Distribution of users’ latency 

 

Figure 55 CDF of users' latency 

We show in Figure 55 the CDF of users’ latency when we have a cost budget 6650 (units) (as in Figure 

54). Figure 55 presents more details on the distribution of users’ QoE. There are 82% of the users can 

get the service in less than 20 ms. Only about 12% of the users suffer from high latency, which is 

larger than 50 ms. Since we have the max-min fairness constraint, even Rmax = 150 ms, the worst 

users in the simulation have the latency which is less than 115 ms. 

4.4.2.3 Benefit of max-min fairness 

 

Figure 56 Latency with and without max-min fairness 

Figure 56 shows the comparison between the case if we consider max-min fairness (step 1 of the 

algorithm) and the case we simply maximize the total utility (ignore step 1 in the algorithm). The x-

axis is the interval of cost ranging from the maximum and the minimum cost, which correspond to 

each step in Figure 54. As shown in Figure 56, in all cases, with the max-min fairness constraint, the 

worst users still can get a better QoE (latency is less than 115 ms) compared to the case without 
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max-min fairness (maximum latency is equal to Rmax = 150 ms).

 

 

4.5 Late binding measurements 

Different networking technologies can be used for inter-VM communication from which some are 

discussed in the following paragraphs. The technology evaluation aims to indicate:  

• the intricate configuration aspects of the different networking technologies; 

• describe the data plane benefits each technology can offer; 

• the configuration aspect of their use in inter-service communication.  

The latter topic will indicate the diversity of the technologies and serves as an input for deciding the 

abstraction and specification level that a service manifest should deal with when specifying 

networking requirements of a service at design time. 

4.5.1 SR-IOV Inter-VM communication  

A technology description has been given in 3.7.3.1.1. In Figure 57, the SR-IOV throughput is shown 

for some of the possible interconnection realizations. Specifically, inter-VM communication using SR-

IOV interfaces whereby the traffic between the VM is transported by the NetworkInterfaceCard is 

presented in the diagram.  

The diagram compares SR-IOV–SR-IOV and SR-IOV–regular. SR-IOV regular indicates communication 

between one SR-IOV interface and the physical host interface. From the diagram it becomes clear 

that with increasing packet size, increasing throughput is obtained for SR-IOV – SR-IOV 

communications and therefore, larger packet sizes are preferred. The observed latency is typically 

below 1msec. 
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Figure 57 – SR-IOV throughput for different packet sizes 

4.5.2 IVSHMEM inter-VM communication 

A technology description has been given in 3.7.3.2.1. In [IVSH01], some performance measurements 

are described. The key take-aways described in this document is that IVSHMEM is an alternative for 

inter-VM, intra-host InterProcessCommunication mechanisms such as virtio+vhost. Specifically, the 

document mainly points out latency reduction that can be obtained using the IVSHMEM method and 

reports an order of magnitude lower latency and higher bandwidth in case of MPI communications. 

From our own measurements, we measured an average latency of about 60 microseconds to notify 

data availability between sender and receiver via the doorbell mechanism (see Figure 58). Combined 

with the high memory bandwidth for copying data (typically 20-80 GB/s on modern servers), this 

allows for very high data throughput between VMs that are interconnected with shared memory, 

especially for large packet sizes.  

 

Figure 58 – IVSHMEM inter-VM communication latency 

4.5.3 Dctcp 

A technology description is given in 3.7.3.3.1. TCP and also DCTCP are negatively impacted by a 

window size that is smaller than BDP. In case of data centres, the network RTT between servers is 

below or around 1msec. 

The performance of TCP, DCTCP and variants has to be evaluated against their design and purpose 

and can be roughly summarized by the measure of stability/variability of throughput over time. 

Through simulation, the benefits of DCTCP vs TCP have been studied. The model simulates 5 regular 

TCP flows that are indicated with TCP “RENO” and 5 DCTCP flows. All flows transmit their data into a 

queue and use their respective algorithms when encountering congestion. The outcome of the 
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model allows to inspect the throughput of the individual flows and compare these against one 

another (for example, in equal share). 

Mainly 2 payloads have been considered, notably: 

• voice call packets:  240Byte/msg [CISC01]  

• video frame packets: 1500Byte/msg 

for a 10Gbps network link and in case of 10 simultaneous flows.  

In Figure 59, some throughput results are shown for DCTCP for a payload of 240 bytes per packet on 

10Gbps link with an RTT of 10 and 1msec. 

 

Figure 59 – DCTCP throughput results for packets of 240 bytes across different flows 

 

From the results it is clear that:  

• TCP regular flows show quite some throughput differences amongst the flows 1-5, ranging from 

1252Mbps to 872Mbps in case of 10msec RTT indicating a deviation of ~25% from theoretical 

equal share scenario. In case the RTT is 1 msec, throughput ranges between 1135Mbps and 

899Mbps (reduction of deviation to ~11% from equal share scenario). 

• DCTCP provides a fair sharing in throughput over the different DCTCP flows.  

On the same 10Gbps link, a payload of 1500bytes per packet was simulated with 10 simultaneous 

flows where 5 flows with regular TCP are modelled and 5 flows using DCTCP algorithm with 2 RTT 

values, 10 and 1msec. These results are depicted in Figure 60. 

 

Figure 60 – DCTCP throughput results for packets of 1500 bytes across different flows 

From the results it is clear that DCTCP gives overall more consistent fair share for each of the flows. 

The TCP flows show less spread, ranging between 1103 and 970Mbps in case of 10msec RTT (~7% 
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deviation from theoretical equal share scenario.) and 1057 to 990Mbps in case of 1msec RTT (~4%  

deviation from equal share scenario). 

Round-trip time has impact on the TCP throughput variability whereby increasing RTT causes 

increasing throughput differences. RTT has little impact on DCTCP. 

4.5.4 Docker libchan 

A technology description is given in 3.7.3.4.1. Concerning libchan sessions established between 

containers on the same host and benefitting from zero copy channels, it is expected that this 

behaves alike shared memory communication.  

Figure 61 shows initial inter-container throughput results over using libchan using regular TCP 

connections between two Docker containers (LXC – LXC communication), showing an on average 

throughput of 12.4Gbps.  The initial uptake in throughput in the graph is due to TCP’s slow start 

mechanism. 

  

Figure 61 – libchan TCP throughput results over time 

In case of using a 'zero copy' method while sending the data, the on average throughput increases to 

about 22.7Gbps.  

When the test is repeated on directly connected hosts, we observe that the interconnect HW is the 

bottleneck for throughput (assuming 10Gbps interfaces). With respect to latency, the maximum 

latency was 30.8usec, whereas the minimum latency was 17.2usec.  

4.5.5 RoCE 

A technology description is given in 3.7.3.5.1. The following results were obtained by measuring 

latency and throughput between two servers with regular sender and receiver processes on a Linux 

OS. Four different RoCE working conditions and their corresponding throughput/latency have been 

measured: 

• Default: out of the box configuration of RoCE communication, using RoCE specific 

communication methods (such as SDP). 

• Mtu 2048:  RoCE’s MTU are subject to InfiniBand MTU restrictions. The RoCE’s MTU values are, 

256 byte, 512 byte, 1024 byte and 2K. The actual IB MTU cannot exceed the mlx4_en interface's 

MTU. Since the mlx4_en interface’s MTU is 1560, it will run with MTU of 1K. Increasing interface 

MTU to 2K allows to select an RoCE MTU of 2048. Increasing the MTU causes greater efficiency 

and decreased processing of packets due to fewer packets for same throughput. 
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• Tcp tuned: This option refers to actual TCP use for communication in stead of SDP in default 

case. The tuning refers to the “Tuning the Network Adapter for Improved IPv4 Traffic 

Performance” chapter 3.8 in http://www.mellanox.com/related-

docs/prod_software/Performance_Tuning_Guide_for_Mellanox_Network_Adapters.pdf 

where parameters like TCP timestamps where disabled, TCP selective ACK enabled etc. 

• Interrupt moderated: Interrupt moderation is used to decrease the frequency of network 

adapter interrupts to the CPU. The algorithm checks the transmission (Tx) and receive (Rx) 

packet rates and modifies the Rx interrupt moderation settings accordingly. 

 

(a) ROCE throughput 

 

(b) ROCE latency 

 

Figure 62 – Impact of packet size and network parameters on ROCE throughput and 

latency. The left graph shows throughput, whereas the right graph shows latency results. 

All of the options show a maximum attainable throughput of ~145Gbps and latency of well below 

100usec for packet sizes up to 65K. The tradeoff that needs to be made is either 

• Selecting smaller packet size (<65KB) with ultra low latency (<100usec) but reduced 

throughput compared to max attainable or  

• Selecting larger packet size (>65KB), allowing max throughput but at a cost of increased 

latency  ranging between 1-7msec. 
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5. SUMMARY 

In this deliverable, we provided an update on the FUSION service orchestration and management 

layers. We described a number of patterns for distributed service orchestration as well as 

enumerated a set of challenges and opportunities for efficiently demanding services on 

heterogeneous environments. 

Second, we introduced a new concept in FUSION called multi-configuration service instances, 

separating service component instances from FUSION service configurations and corresponding 

session slots, enabling key benefits such as (i) increased reuse of resources and component 

instances, (ii) controlled session-based resource oversubscription and (iii) virtual elastic scaling across 

existing component instances. 

Next, we provided an update on the key FUSION functions such as monitoring, lifecycle 

management, service placement and service scaling, describing new algorithms and corresponding 

evaluations. Based on this, we updated the design of the key FUSION service management layers and 

described the status of their initial implementation. Additionally, we also detailed on the various 

service management and communication protocols. 

Finally, we described the results of a number of specific experiments regarding particular enabling 

technologies and algorithms, such as the potential impact of a heterogeneous cloud environment 

and the impact of particular service placement algorithms. 

In the last year of the project, we will focus on incorporating more complex service and orchestration 

patterns, extend the initial prototype implementation, implementing more complex algorithms and 

scenarios and continue our work on heterogeneous cloud platforms for efficiently deploying 

demanding services. This will result in new concepts and algorithms, some of which will also be 

worked out and evaluated as part of the integrated demonstrator in WP5. 
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7. APPENDIX A: PROTOCOL SPECIFICATIONS 

This appendix provides an overview of all REST protocol specifications that we defined (and largely 

implemented) so far with respect to FUSION orchestration and management layers. It contains the 

protocols of the various orchestration layers (i.e., domain, zone, DCA) as well as the application and 

evaluator services APIs. The full specifications including their key parameters and message structure 

will be provided later in a separate reference document. 

7.1 Domain orchestration protocols 

This section covers all public domain orchestration protocols. We grouped these protocols based on 

the resource type they control. 

7.1.1 Zone management protocols 

Below a list of REST protocols for managing zones. 

/1.0/zones 

GET Returns a (filtered) list of all registered zones in this orchestration domain. 

POST Register a new zone in this domain (only can be done by domain admin and authorized 

zone admins). 

DELETE Remove all zones from this domain (e.g., in the context of a zone admin). 

 

/1.0/zones/<zoneID> 

GET Fetch detailed information of this zone (i.e., services, state, etc.). 

DELETE Remove this zone from this domain (terminating all running instances first).  

 

/1.0/zones/<zoneID>/services 

GET Returns a (filtered) list of all registered services in a specific zone in this orchestration 

domain. 

POST Register a new service in this zone. 

DELETE Remove all services from this zone (terminating all instances and unregistering them first). 

 

7.1.2 Service management protocols 

Below a list of REST protocols for managing services. 



D3.2 Updated node design, algorithms & protocols for service-oriented network 

management 

Page 122 of 136

 

Copyright © FUSION Consortium, 2014 

/1.0/services 

GET Returns a (filtered) list of all registered services in this orchestration domain, along with 

their current state and session slot information. Filtering is done based on ACL as well as 

an optional filtering request parameter. 

POST Register a new service in this domain. 

DELETE Remove all services from this domain (e.g., in the context of a service provider). 

 

/1.0/services/<serviceID> 

GET Fetch detailed information of this service (i.e., manifest, runtime state, etc.). 

DELETE Remove this service from this domain (possibly terminating all running instances first).  

 

/1.0/services/<serviceID>/state 

GET Fetch global state information of this service in this domain. 

PUT Change global domain service lifecycle state (e.g., register, provision, deploy, terminate) in 

the entire domain. 

DELETE Remove this service from this domain (possibly terminating all running instances first).  

 

/1.0/services/<serviceID>/slots 

GET Fetch detailed information of the number of available and used session slots of this 

service in the entire domain. 

PUT Change the number of available session slots of this service in the entire domain.  

DELETE Remove all active slots from this service in this domain (i.e., terminate service instances). 

 

/1.0/services/<serviceID>/zones 

GET Returns a (filtered) list of all zones in this domain where this service is registered. 

POST Register this service in a new zone. 

DELETE Remove this service from all zones in this domain (terminating all instances and 

unregistering the service first in all respective zones). 

 

7.1.3 Service zone management protocols 

Below a list of REST protocols for managing services in a specific zone, and vice versa. 
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/1.0/services/<serviceID>/zones/<zoneID> 

/1.0/zones/<zoneID>/services/<serviceID> 

GET Fetch detailed information of this service in this specific zone. 

DELETE Remove this service entirely from this zone in this domain (possibly terminating all 

running instances first).  

 

/1.0/services/<serviceID>/zones/<zoneID>/state 

/1.0/zones/<zoneID>/services/<serviceID>/state 

GET Fetch global state information of this service in this zone. 

PUT Change service lifecycle state of this service in this specific zone (e.g., register, provision, 

deploy, terminate). 

DELETE Remove this service from this zone (possibly terminating all running instances first).  

 

/1.0/services/<serviceID>/zones/<zoneID>/slots 

/1.0/zones/<zoneID>/services/<serviceID>/slots 

GET Fetch detailed information of the number of available and used session slots of this 

service in this specific zone. 

PUT Change the number of available session slots of this service in this zone.  

DELETE Remove all active slots from this service in this zone (i.e., terminate service instances in 

this zone). 

 

7.1.4 User management protocols 

Below a list of REST protocols for managing users. 

/1.0/users 

GET Returns a (filtered) list of all registered users in this domain. 

POST Register a new user in this domain. 

DELETE Remove all users from this domain. 

 

/1.0/users/<userID> 

GET Fetch detailed information of this user. 

DELETE Remove this user from this domain (possibly terminating all running instances first).  

 

7.2 Zone manager protocols 

This section provides a list of all current public zone manager protocols, grouped per resource type. 
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7.2.1 Service management protocols 

Below a list of REST protocols for managing services and their slots in a zone. 

/1.0/services 

GET Returns a (filtered) list of all registered services in this zone, along with their current state 

and session slot information. 

POST Register a new service in this zone. 

DELETE Remove all services from this zone (e.g., in the context of a service provider). 

 

/1.0/services/<serviceID> 

GET Fetch detailed information of this service in this zone (i.e., slots, runtime state, etc.). 

DELETE Remove this service from this zone (possibly terminating all running instances first).  

 

/1.0/services/<serviceID>/state 

GET Fetch state information of this service in this zone. 

PUT Change service lifecycle state (e.g., register, provision, deploy, terminate) in this zone. 

DELETE Remove this service from this zone (possibly terminating all running instances first).  

 

/1.0/services/<serviceID>/slots 

GET Fetch detailed information of the number of available and used session slots of this 

service in this zone. 

PUT Change the number of available session slots of this service in this zone.  

DELETE Remove all active slots from this service in this zone (i.e., terminate service instances). 

 

/1.0/services/<serviceID>/instances 

GET Returns a (filtered) list of all (composite) service instances of this service in this zone, 

along with their current state and session slot information.  

POST Explicitly create a new instance of this specific service in this zone. Typically, this also 

immediately starts the instance, but this could also simply be a provisioning or creation 

request. 

DELETE Remove all instances of this service from this zone. 

 

7.2.2 Service evaluation and offer management protocol 

Below a list of REST protocols for fetching and creating service evaluation offers as part of service 

placement and deployment. 
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/1.0/services/<serviceID>/offers 

GET Returns a (filtered) list of all stored evaluation offers for this specific service in this zone. 

POST Create a new service evaluation offer for this service in this zone: this is the service 

evaluation API for the domain to make an evaluation. 

DELETE Remove all stored evaluation offers for this service in this zone (i.e., flush the cache). 

 

/1.0/offers 

GET Returns a (filtered) list of all stored evaluation offers of all services in this zone. 

POST Create a new service evaluation offer for a service in this zone. The serviceID must be 

provided in the body of the request. 

DELETE Remove all stored evaluation offers for all services in this zone (i.e., flush the cache). 

 

/1.0/ offers/<offerID> 

GET Fetch detailed information of a particular offer. 

DELETE Remove this offer from this zone.  

 

7.2.3 Service instance management protocols 

Below a list of REST protocols for managing service instances from in a particular zone. Note that 

these protocols may or may not be visible to a domain orchestrator, as a domain should mainly be 

concerned with services and the number of slots, and not about the number of individual instances. 

/1.0/instances 

GET Returns a (filtered) list of all (composite) service instances in this zone, along with their 

current state and session slot information.  

POST Explicitly create a new service instance in this zone. Typically, this also immediately starts 

the instance, but this could also simply be a provisioning or creation request. 

DELETE Remove all service instances from this zone (e.g., in the context of a service provider). 

 

/1.0/instances/<instanceID> 

GET Fetch detailed information of this high-level service instance (i.e., session slots, runtime 

state, etc.). 

DELETE Terminate and remove this service instance from this zone.  
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/1.0/instances/<instanceID>/state 

GET Fetch state information of this service instance in this zone. 

PUT Change lifecycle state of the service instance (e.g., provision, deploy, terminate). 

DELETE Remove this service instance from the zone (possibly terminating the instance first).  

 

/1.0/instances/<instanceID>/slots 

GET Fetch detailed information of the number of available and used session slots of this 

service instance. 

PUT Change the number of available session slots of this service instance.  

DELETE Remove all active slots from this instance. 

 

7.2.4 General management protocols  

Below a list of admin REST protocols for managing users, domain and DCA. 

/1.0/domain 

GET Fetch detailed information on the domain that is currently registered to this zone. 

PUT Register a domain to this zone. In the current model, we only support a zone to be part of 

one domain. 

DELETE Detach and remove this domain from this zone. This should only be possible if no services 

are active anymore from this domain. 

 

/1.0/dca 

GET Fetch detailed information on the DCA that is currently registered to this zone. 

PUT Register a DCA to this zone. In the current model, we only support a zone to be deployed 

on top of a single DC/DCA (for locality). 

DELETE Detach and remove this DCA from this zone. This should only be possible if no instances 

are active anymore from this DCA. 

 

/1.0/users 

GET Returns a (filtered) list of all registered users in this zone. 

POST Register a new user in this zone. 

DELETE Remove all users from this zone. 
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/1.0/users/<userID> 

GET Fetch detailed information of this user. 

DELETE Remove this user from this zone. Users can only be removed when all their state is 

removed first. 

 

7.3 DC adaptor protocols 

This section covers all current DCA protocols, grouped per resource type. 

7.3.1 Zone management protocols 

Below a list of REST protocols for managing zones on top of a DCA. As can be observed, we allow for 

multiple zones to be deployed on top of the same DCA instance, though not all DCAs are required to 

support this multi-tenant model. 

/1.0/zones 

GET Returns a (filtered) list of all registered zones in this DCA. 

POST Add a new zone to this DCA. 

DELETE Remove all registered zones from this DCA. 

 

/1.0/zones/<zoneID> 

GET Fetch detailed information of this zone in this DCA (i.e., instances, slots, state, etc.). 

DELETE Remove this zone from this DCA (terminating all running instances first).  

 

7.3.2 Service instance management protocols 

Below a list of REST protocols for managing service component instances from particular zones in this 

DCA. 

/1.0/instances 

GET Returns a (filtered) list of all service component instances in this DCA, along with their 

current state and session slot information.  

POST Create a new service component instance in this DCA. Typically, this also immediately 

starts the instance, but this could also simply be a provisioning or creation request. 

DELETE Remove all instances from this DCA (e.g., in the context of a zone). 

 

/1.0/instances/<instanceID> 

GET Fetch detailed information of this service component instance (i.e., session slots, runtime 

state, etc.). 

DELETE Terminate and remove this instance from this DCA.  
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/1.0/instances/<instanceID>/state 

GET Fetch state information of this service component instance in this DCA. 

PUT Change lifecycle state of the instance (e.g., provision, deploy, terminate). 

DELETE Remove this instance from the DCA (possibly terminating the instance first).  

 

/1.0/instances/<instanceID>/configs 

GET Returns a list of all service configurations associated with this instance.  

POST Add a new service configuration to this instance, with proper service instantiation 

parameters. 

DELETE Remove all service configurations from this instance. 

 

/1.0/instances/<instanceID>/configs/<configID> 

GET Fetch detailed information a particular service configuration associated with this instance. 

DELETE Remove this service configuration from the instance, possibly terminating all active 

sessions first.  

 

/1.0/instances/<instanceID>/ports 

GET Returns a (filtered) list of all port/endpoint mappings with respect to this instance. This 

mapping provides a translation of the private IP address and ports to the public IP address 

and ports.  

 

/1.0/instances/<instanceID>/ports/<portID> 

GET Returns the public endpoint for a specific logical application port.  

 

7.3.3 User management protocols 

Below a list of REST protocols for managing users. In practise, this consists of only the zone managers 

that can deploy and manage their corresponding instances in this DCA. 

/1.0/users 

GET Returns a (filtered) list of all registered users in this DCA. 

POST Register a new user in this DCA. 

DELETE Remove all users from this DCA. 
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/1.0/users/<userID> 

GET Fetch detailed information of this user. 

DELETE Remove this user from this DCA (only when the corresponding zone has no running 

instances anymore).  

 

7.4 FUSION service instance protocols 

Below an initial list of REST protocols for communicating with particular services. We expect some 

additional protocols to be added later. We also envision that services are not required to implement 

these functions. In such case, a FUSION zone manager will try to estimate (e.g., active session slots), 

or depend on the service for contacting the zone manager for exchanging runtime information. 

/1.0/state 

GET Fetch current internal state information of this service instance. 

PUT Change internal service lifecycle state (e.g., start, pause, serialize, terminate, etc.) of this 

instance. This can be used for gracefully shutting down particular instances, (re)starting it, 

etc. 

DELETE Gracefully terminate this instance.  

 

/1.0/slots 

GET Fetch session slot information from this service instance. Note that a service instance can 

also push changes to its session slot information to the zone manager. 

PUT Change the number of available session slots of this service instance.  

DELETE Remove all available slots from this service instance (i.e., terminate service instance). 

 

/1.0/configs 

GET Returns a (filtered) list of all active service configurations associated with this service 

instance.  

POST Add a new service configuration to this instance, with proper instantiation parameters. 

DELETE Remove all service configurations from this service instance (possibly terminating all active 

sessions for these configurations first). 

 

/1.0/configs/<configID> 

GET Fetch detailed information of a particular service configuration. 

DELETE Remove this service configuration from this instance (possibly terminating all active 

sessions from this configuration first).  
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7.5 Evaluator service protocols 

Below a list of REST protocols for requesting service evaluation requests from a zone manager to an 

evaluator service. Evaluator services need to implement this set of protocols. 

/1.0/evaluations 

GET Returns a (filtered) list of all stored evaluations done by this evaluator service. Note that 

we do not require evaluator services to store all evaluations; some can be with relatively 

short expiration dates (or even not stored at all). 

POST Request/create a new evaluation. This will return a (cached) score. This is the main 

function of the evaluator service for doing the evaluations. 

DELETE Remove all stored evaluations from this evaluator service. 

 

/1.0/evaluations/<evaluationID> 

GET Fetch detailed information of a particular evaluation done by this evaluator service. 

DELETE Remove this evaluation from the evaluator service (in case the evaluation was stored).  

 

7.6 Service manifest 

7.6.1 General 

Service description is delivered under the form of a CSAR (Cloud Services ARchive)  

The “Topology and Orchestration Specification for Cloud Applications Version 1.0, OASIS Standard, 

25 November 2013“ specification can be found at following link:  http://docs.oasis-

open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html  

The EPG TOSCA CSAR has the following layout. 

 

7.6.2 FusionTypes.yaml 

tosca_definitions_version: tosca_simple_yaml_1_0  

tosca.nodes.FusionAuthentication: 

  derived_from: tosca.nodes.Root 

  capabilities:  
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    # IP connection for service 

    userid: string  

      properties: 

        secure: true 

        required: true 

    pass: string 

      properties: 

        secure: true 

        required: true 

 

tosca.nodes.FusionService: 

  derived_from: tosca.nodes.SoftwareComponent 

 

  capabilities:  

    # IP connection for service 

    app_endpoint: tosca.capabilities.AppEndpoint 

      properties: 

        secure: false 

        initiator: peer 

        required: true 

        ports: 

          userport: 

            protocol: tcp 

            target: integer 

            # target_range: [ 5000, 5099  ] 

               

    # IP connection info for management of the service using 

FUSION management protocol 

    admin_port: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        required: true 

        ports: 

          userport: 

            protocol: tcp  #http,https,ftp,tcp,udp,... 

            target: 5000 

            target_range: [ 5000, 5099  ] 

 

    # the section about distributed context key value store is 

optional  

    # 1st option is to use the link with FusionDomain and 

therefore associated KeyValue store and get connection info 

from there 

    # 2nd option is to embed the info here as described below. 

    # distributed context Key value store (ETCD) IP connection 

info 

    context_endpoint: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        required: true 

        ports: 

          userport: 

            protocol: http #rest 

            target: <etcdconnection endpoint info> 

      context_root:  

        type: string 

        required: true 

 

    # service scaling (number of instances of this service) 

    svc_scaling: tosca.capabilities.Scalable 

      properties: 

        min_instances: integer 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

        max_instances: 

          type: integer 

          required: true 

          constraints: 

            - greater_or_equal: 1  

 

    # range of session slots 

    session_slots:  

      properties: 

        min_slots: 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

        max_slots: 

          type: integer 

          required: true 

          constraints: 

            - greater_or_equal: 1  

        initial_slots: 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

 

  requirements: 

    - host: tosca.nodes.Compute 

    - AttachTo: tosca.nodes.fusioncomponent 

 

 

# component is a component part of an entire service. 

# should cover composite graph functionality. 

# todo: correct or complete info 

tosca.nodes.fusioncomponent: 

  derived_from: tosca.nodes.softwarecomponent 

  capabilities:  

    # ip connection for service 

    app_endpoint: tosca.capabilities.appendpoint 

      properties: 

        secure: false 

        initiator: peer 

        ports: 

          userport: 

            protocol: tcp 

            target: integer 

            # target_range: [ 5000, 5099  ] 

               

    # ip connection info for management of the service using 

fusion management protocol 

    admin_port: tosca.capabilities.endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          userport: 

            protocol: tcp  #http,https,ftp,tcp,udp,... 

            target: 5000 

            target_range: [ 5000, 5099  ] 

 

    # distributed context key value store (etcd) ip connection info 

    context_endpoint: tosca.capabilities.endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          userport: 

            protocol: http #rest 

            target: <etcdconnection endpoint info> 

      context_root:  

        type: string 

        required: true 
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    # service scaling (number of instances of this service) 

    svc_scaling: tosca.capabilities.scalable 

      properties: 

        min_instances: integer 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

        max_instances: 

          type: integer 

          required: true 

          constraints: 

            - greater_or_equal: 1  

 

    # range of session slots 

    session_slots:  

      properties: 

        min_slots: 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

        max_slots: 

          type: integer 

          required: true 

          constraints: 

            - greater_or_equal: 1  

        initial_slots: 

          type: integer 

          required: true 

          default: 1 

          constraints: 

            - greater_or_equal: 1  

 

# todo: service component configuration parameters 

 

  requirements: 

    - host: tosca.nodes.compute 

#    host:  

#      # should this distinction be made here or are these 

different types 

#      type: [ vm, container ] 

 

# todo: correct or complete info 

tosca.nodes.fusionevaluator: 

  derived_from: tosca.nodes.softwarecomponent 

  capabilities:  

    # ip connection for service 

    evaluator_endpoint: tosca.capabilities.appendpoint 

      properties: 

        secure: false 

        initiator: peer 

        ports: 

          endpoint:  

            type: string   # (ip@) 

          userport: 

            protocol: http 

            target: integer 

 

    # distributed context key value store (etcd) ip connection info 

    context_endpoint: tosca.capabilities.endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          userport: 

            protocol: http # assume rest API to retrieve evaluation 

metric 

            target: <etcdconnection endpoint info> 

      context_root:  

        type: string 

        required: true 

 

      # with get_attribute function, evaluation result can be 

retrieved   

      evaluationresult:  

        type: integer / string   # did not find float... 

 

  requirements: 

    - host: tosca.nodes.compute 

    - DependsOn: tosca.nodes.fusionservice (/ 

tosca.nodes.fusioncomponent) 

    - AttachTo: tosca.nodes.fusiondomain 

 

#    host:  

#      # should this distinction be made here or are these 

different types 

#      type: [ vm, container ] 

 

tosca.nodes.FusionSvcContextRepo: 

  derived_from: tosca.nodes.SoftwareComponent 

  capabilities:  

    # IP connection for service 

    # distributed context Key value store (ETCD) IP connection 

info 

    context_endpoint: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        required: true 

        ports: 

          userport: 

            protocol: http #rest 

            target: <etcdconnection endpoint info> 

      context_root:  

        type: string 

        required: true 

               

    # IP connection info for management of the ETCD service 

    admin_port: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        required: true 

        ports: 

          userport: 

            protocol: tcp  #http,https,ftp,tcp,udp,... 

            target: 5000 

            target_range: [ 5000, 5099  ] 

 

    username: string 

      properties: 

        required: true 

    password: string 

      properties: 

        required: true 

   

  # describes to what it is linked and dependencies   

  requirements: 

    - host: tosca.nodes.Compute 

    - AttachTo: tosca.nodes.FusionDomain 

 

tosca.nodes.FusionDomain: 

  derived_from: tosca.nodes.SoftwareComponent 

  capabilities:  

    # IP connection for service 

    # application originated config setting (App=> fusion) 

    public_domain_endpoint: tosca.capabilities.AppEndpoint 

      properties: 
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        secure: true 

        initiator: peer 

        ports: 

          userport: 

            protocol: http # rest interface endpoint 

            target: 6000 

      requirements: 

        - AttachTo: tosca.nodes.FusionAuthentication  

 

    # IP connection for service 

    # application configuration setting (Fusion ==> App) 

    public_domain_endpoint: tosca.capabilities.AppCfgEndpoint 

      properties: 

        secure: true 

        initiator: peer 

        ports: 

          userport: 

            protocol: http # rest interface endpoint 

            target: 6000 

      requirements: 

        - AttachTo: tosca.nodes.FusionAuthentication  

 

    # IP connection info for management of the service using 

FUSION management protocol 

    admin_port: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          userport: 

            protocol: http  #http,https,ftp,tcp,udp,... 

            target: 5000 

 

    # either include key value store like this or user AttachTo  

    # distributed context Key value store (ETCD) IP connection 

info 

    servicecontextrepo_endpoint: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          userport: 

            protocol: http #rest 

            target: <etcdconnection endpoint info> 

      context_root:  

        type: string 

        required: true 

 

  # describes to what it is linked and dependencies   

  requirements: 

    - host: tosca.nodes.Compute 

    - AttachTo: tosca.nodes.FusionAuthentication 

    - AttachTo: tosca.nodes.FusionSvcContextRepo 

  

 

7.6.3 FusionMonitorTypes.yaml 

tosca_definitions_version: tosca_simple_yaml_1_0  

 

monitoring_types:  

# --- types proposed as part of TOSCA-189 

# --- Begin 

# Metric base type  

  tosca.monitoring.Metric:  

      derived_from: tosca.nodes.Root  

      description: The basic metric type all other TOSCA metric 

types derive from  

      properties:  

          polling_schedule:  

                type: string  

          return_type:  

                type: string  

          metric_unit:  

                type: string  

          aggregation_method:  

                type: string  

                constraints:  

                    - valid_values: [SUM, AVG, MIN, MAX, COUNT]  

    

# A single metric sample  

  tosca.monitoring.MetricSample:  

      derived_from: tosca.monitoring.Metric  

      description: A single metric sample,application KPI, like CPU, 

MEMORY, etc.  

      properties:  

          node_state:  

               type: string  

               constraints:  

                    - valid_values: [RUNNING, CREATING, STARTING, 

TERMINATING, ..]  

      requirements:  

                  #a sample metric requires an endpoint  

           - endpoint: tosca.capabilities.Endpoint  

 

#An aggregated metric  

  tosca.monitoring.AggregatedMetric:  

        derived_from: tosca.monitoring.Metric  

        description: An aggregated metric  

        properties:  

           # The time window in millis for aggregating the metric  

           msec_window:  

                type: integer  

                constraints:  

                   - greater_than: 0  

        requirements:  

           - basedonmetric: tosca.monitoring.Metric  

# --- End 

# --- types proposed as part of TOSCA-189 

 

#  

# session slot metrics 

  tosca.monitoring.SessionSlotMetric: 

    derived_from: tosca.nodes.Root 

    description: reporting of SessionSlotInformation (resource 

and )  

    properties:  

      slots:    

        type: integer 

        constraints:  

          - greater_or_equal: 0  

    requirements:  

      - basedon: tosca.nodes.FusionComponent 

 

 

relationship_types:  

# --- types proposed as part of TOSCA-189 

# --- Begin 

 

# a relationship between sample and endpoint  

   tosca.relationships.monitoring.EndPoint:  

       short_name: endpoint  

       derived_from: tosca.relationships.Root  

       valid_targets: [ tosca.nodes.FusionComponent ]  
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#this is a relationship to enforce that aggregated metric is based 

on other sample/aggregate metric  

    tosca.relationships.monitoring.BasedOnMetric:  

      short_name: basedonmetric  

      derived_from: tosca.relationships.DependsOn  

      valid_targets: [ 

alu.capabilities.Monitorable.MetricSample,alu.capabilities.Moni

torable.AggregatedMetric ]  

 

# --- End 

# --- types proposed as part of TOSCA-189 

 

# a relationship between sample and endpoint  

   tosca.relationships.monitoring.FusionComponent: 

       short_name: fusioncomponentmonitor 

       derived_from: tosca.relationships.Root  

       valid_targets: [ tosca.nodes.SessionSlotMetric ]

 

7.6.4 FusionPolicyTypes 

tosca_definitions_version: tosca_simple_yaml_1_0  

 

# policies are not defined yet for the simple profile 

# therefor first proposal to define tosca.policy 

tosca.policy.Root: 

    description: The tosca Policy type all other TOSCA base Policy 

Types derive from 

    requirements:  

        - dependency: 

          type: tosca.capabilities.feature  

          lowerbound: 0 

          upper_bound: unbounded 

    capabilities: 

      feature: tosca.capabilities.Feature 

 

tosca.policy.FusionLateBind: 

    description: fusion late binding Policy Type 

    short_name: latebind 

    derived_from: tosca.policy.Root 

    # following allows to attach policy onto "DependsOn", 

"AppliesTo" relationships. 

    applies_to: tosca.relationships.Root 

    properties: 

        allow_latebinding: string 

                constraints:  

                    - valid_values: [ yes, no]  

        max_latency:  

                type: string  

        latency_unit:  

                type: string  

                constraints:  

                    - valid_values: [ USEC, MSECT]  

        min_throughput:  

            type: string 

        throughput_unit:  

                type: string  

                constraints:  

                    - valid_values: [ Kbps, Mbps, Gbps]  

       # still to discuss what valid target this policy type can attach 

to. 

       valid_targets: [ tosca.nodes.FusionComponent ]  

          

tosca.policy.FusionPlacementPolicy: 

    description: fusion placement Policy Type 

    short_name: placementpolicy 

    derived_from: tosca.policy.Root 

    # following allows to attach policy onto "DependsOn", 

"AppliesTo" relationships. 

    applies_to: tosca.relationships.Root 

    properties: 

        # any fusion generial placement constraints to be placed 

here. 

     

    # still to discuss what valid target this placement policy type 

can attach to. 

    # options are  

    # * components but these are more constraints 

    # * likely at relationship between fusioncomonents  

    # * fusionservice. 

    valid_targets: [ tosca.relationships.DependsOn] 

 

7.6.5 ServiceDeploymentSettings.yaml 

tosca_definitions_version: tosca_simple_yaml_1_0_0 

 

description: Template for deploying  in time 

 

tosca.capabilities.slot: 

  derived_from: tosca.capabilities.Root (ToCheck) 

  msec_window: 

    type: integer 

    required: true 

    constraints: 

    - greater_or_equal: 0  # 0 indicated  

  timestamp: 

    type: time in day 

    required: false  # optional setting 

  # extend for days, weeks, years ...timestamp: 

 

slot_immediate: 

  type: tosca.capabilities.slot 

  msec_window: 0 

 

slot_1: 

  type: tosca.capabilities.slot 

  msec_window: 10000 

  timestamp: 00:00:00 
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# etc. 

7.6.6 FusionEPG.yaml 

tosca_definitions_version: tosca_simple_yaml_1_0_0 

 

description: Template for deploying a single service with 

predefined properties. 

 

inputs: 

  cpus: 

    type: integer 

    description: Number of CPUs for the server. 

    constraints: 

      - valid_values: [ 1, 2, 4, 8 ] 

   

  maxsessionslots: 

    type: integer 

    description: Number of session slots for this service  

    constraints: 

      - in_range: [ 50, 500 ] 

 

node_templates: 

  myEPG: 

    type: tosca.nodes.FusionService 

    properties:  # or is it properties:  

      app_endpoint: tosca.capabilities.AppEndpoint 

        properties: 

          ports: 

            user_port: 

              target: 5000 

      admin_port: tosca.capabilities.Endpoint 

      properties: 

        secure: false 

        initiator: source 

        ports: 

          user_port: 

            protocol: tcp  #http,https,ftp,tcp,udp,... 

            target: 5000 

            target_range: [ 5000, 5099  ] 

      context_endpoint: tosca.capabilities.Endpoint 

        properties: 

          ports: 

            user_port: 

              protocol: http #rest 

              target: <etcdconnection endpoint info> 

      context_root:  

        type: <root for context in ETCD> 

        required: true 

 

      svc_scaling: tosca.capabilities.Scalable 

        properties: 

        min_instances: 1 

        max_instances: 10 

 

      session_slots:  

        properties: 

          min_slots: 1 

          max_slots: { get_input: maxsessionslots }  

          initial_slots: 10 

 

      # demo description of scripts that are launched when 

described. 

      interfaces: 

        standard: 

          create: scripts/epg_install.sh 

          start: scripts/epg_start.sh 

 

    requirements: 

    - host: my_server 

 

 

  myEPGevaluator: 

    type: tosca.nodes.fusionevaluator 

    properties:  # or is it properties:  

      evaluator_endpoint: tosca.capabilities.AppEndpoint 

        properties: 

          ports: 

            endpoint: 127.0.0.1 

            userport:  

              target: 5000 

      context_endpoint: tosca.capabilities.Endpoint 

        properties: 

          ports: 

            user_port: 

              protocol: http #rest 

              target: <etcdconnection port endpoint info> 

      context_root:  

        type: <root for context in ETCD> 

        required: true 

 

      evaluationresult: tosca.capabilities.Scalable 

 

    requirements: 

    - host: my_server 

    - DependsOn: myEPG  

    - AttachTo: my_fusiondomain  

 

  my_server: 

    type: tosca.nodes.Compute 

    properties: 

      # compute properties 

      disk_size: 10  

      num_cpus: 2  

      mem_size: 4   

      # host image properties 

      os_arch: x86_64  

      os_type: linux   

      os_distribution: ubuntu 

      os_version: 12.04 

 

 

  my_fusionserver: 

    type: tosca.nodes.Compute 

    properties: 

      # compute properties 

      disk_size: 10  

      num_cpus: 4  

      mem_size: 16   

      # host image properties 

      os_arch: x86_64  

      os_type: linux   

      os_distribution: ubuntu 

      os_version: 12.04 

 

  my_fusiondomain: 

    type: tosca.nodes.FusionDomain 

    properties:  

      public_domain_endpoint: tosca.capabilities.AppEndpoint 

      properties: 

        ports: 

          user_port: 

            target: 6080 

      requirements: 

        - AttachTo: my_fusiondomainauthentication 

 

    # IP connection info for management of the service using 

FUSION management protocol 
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    admin_port: tosca.capabilities.Endpoint 

      properties: 

        ports: 

          user_port: 

            target: 5070 

  requirements: 

    - host: my_fusionserver 

    - AttachTo: my_fusiondomainauthentication 

    - AttachTo: my_fusiondomainkeyvaluestore 

 

 

my_fusiondomainauthentication: 

  type: tosca.nodes.FusionAuthentication: 

  properties:  

    userid: MY_FUSIONDOMAIN_ID_HERE 

    pass: MY_FUSIONDOMAIN_HERE 

 

my_fusiondomainkeyvaluestore: 

  type: tosca.nodes.FusionSvcContextRepo: 

  properties:  

    context_endpoint: tosca.capabilities.Endpoint 

      properties: 

        ports: 

            target:  127.0.0.1 

        context_root: /domain1  

    admin_port: tosca.capabilities.Endpoint 

      properties: 

        ports: 

          user_port: 

            target: 5090 

    username: MY_ETCD_USERNAME 

    password: MY_ETCD_PWD 

   

  # describes to what it is linked and dependencies   

  requirements: 

    - host: tosca.nodes.Compute 

    - AttachTo: my_fusiondomain 

 

outputs: 

  server_ip: 

    description: The private IP@ of the provisioned server 

    value: { get_property: [ my_server, ip_address ] } 

 

 

 


